Numerical Analysis / Civil Eng. / 3™ Class

Numerical Analysis

Syllabus
1- Introduction.

2- Numerical Solution of Algebraic Equations (Roots of equations).
3- Numerical Solution of Set of Algebraic Equations.

4- Taylor Series.

5- Numerical Differentiation (Finite Differences Calculus).

6- Numerical Integration.

7- Numerical Solution of Ordinary Differential Equations.

8- Curve Fitting.

9- Interpolation And Extrapolation.

References

- Numerical Methods in Engineering Practice,
by A. W. Al-Khafaji and J. R. Tooley.

- Numerical Methods,
by R. W. Hornbeck.

- Numerical Methods Using MATLAB,
by J. H. Mathew and K. D. Fink.

- Numerical Analysis,
by R. L. Burden and J. D. Faires.



Numerical Analysis / Civil Eng. / 3™ Class

1-Introduction

Numerical methods

Numerical methods are a class of techniques used for solving a wide variety of

mathematical problems in terms of numbers using only arithmetic and logic

operations. The main advantage of numerical methods is their ability to solve

problems that can not be treated using classical analytical mathematics, such as non-

linearity and complex geometries. The disadvantage is that the solutions using

numerical methods are iterative, approximate, and not exact as those obtained by

analytical methods.

Errors in numerical computations

1-

Errors from the method of solution, since all numerical methods are only
approximate.

Errors from solution truncation, since numerical methods are iterative and the
iterations can not continue infinite times.

Errors from numbers round off.

Errors from the mathematical model of the physical problems. For example in
flexural formula the dx* term is neglected , also usually sin @ is approximated
to € for small values of the later.

Error calculation

1- The absolute erroris E or A =

2- The relative erroris R=

If x IS an approximate to x then:
exact

approx

X

X J
exact appro
X — X
exact approx
R

exact

X —X

X

3- The percent relative error is P = |—22% app”’x‘xloo.

exact
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2- Numerical Solution of Algebraic Equations
(Roots of Equations)

Introduction

A problem commonly encountered in engineering is that of determining the
roots of an equation of the form y= f(x). Finding the roots of an equation is
equivalent to finding the values of x for which f(x)=0. For this reason the roots of
equation are often called the zeros of the equation. Different techniques of varying
degrees of accuracy and rates of convergence were developed to determine these
roots.

Root solving problem consists of finding the values of the independent variable
which satisfy relationships, such as:

Ax®+Bx?> =Cx+D.

The procedure for finding the roots will always be to collect all terms on one side of
the equality sign, for example (for the above equation):

Ax®+Bx?-Cx-D=0.

For any values of x other than the roots, this equation will not be satisfied. So in
general:

f(xX)=Ax* +Bx* —-Cx-D.

Now, finding the roots of the above equation is now equivalent to finding the values
of x for which f(x) is zero, i.e:
f(x)=0.

Single and multiple roots

1- x, is asingle (simple) root if f(xl):O and f'(xl);to.
2- X, is a multiple root of :
multiplicity 2 if f(x)=f'(x)=0and f"(x)=0,
multiplicity 3 if f(xl) = f’(xl) = f”(xl) =0 and f’”(xl) #0, and so on.

Accuracy in roots determination

All roots determination numerical methods are iterative, hence roots of
different degrees of accuracy can be obtained depending on the method used and the
-2
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number of iteration performed. The iteration should be continued until one (or more)
of such following conditions are satisfied:

1—A:‘x_ -X |<¢&, where ¢ is the allowed absolute difference between two

i i—-1

successive trials (iterations).

2- ‘f (x_)‘ < E, where E is the allowed absolute error in the value of the function.
1

Solution of algebraic equations (determining roots of equations)

1- Bisection Method
This method, which is also known as interval halving method, is too inefficient

for hand computation but is ideally suited to machine computation.
To find a real root of a given function f(x), the following steps will be used:
1- Estimate two approximations of the root X, and X such that f(xl)< 0

»

( f(xl) IS negative) and f(xr)> 0(f (xr) IS positive). 4

2- Bisect the interval (xI ,xr) to find its midpoint

X +X
X =—"L 5 L (which is considered as an improved /

m Y
approximation of root).
3- Check the sign of f (Xm). If f (Xm) < 0, this mean that the root lies between X

and X, then for the next iteration let X =X If f(xm) > 0, this mean that the
root lies between X, and X then for the next iteration let X =X .

4- Repeat steps 2 and 3 until the required accuracy ¢ is achieved.

Notes:

1- For each iteration, the root is assumed to be the midpoint of the last interval
found to contain it, i.e; the root is X .

2- For each iteration, the maximum absolute error A in the value of the root is no
greater than one half the size of last interval found to contain the root, i.e;

or A:(xm)i —(xm)i_l.

-3
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3- The maximum error A in the value of the root in a given iteration is one half

its value in the previous iteration; A :%A, L So this method has very slow

convergence.
4- The bisection method cannot be used to find roots of functions that do not
change their sign (from positive to negative or from negative to positive).

X —x‘
r ! . SO we can estimate the number of

5- Since Ai:%A_ . and A=

iterations n required to find a root to an accuracy of ¢ as follows:

X —x‘
A<e = T l<e = 2%ez|x,—x| = nh2+Inex=Injx —x‘,
2n r |
Xr_XI
In|x —x‘—lng In -
| or n>_t 1
In2 In2

Example 1: Find the root(s) of the function f (x) = x3 —5x2? —2x+10 using six
iterations.

Solution:

Check the sign of f(x) at different values of x:

X -2 -1 0 1 2 3 4 5

f(x) | -14 6 10 4 -6 - 14 -8 0

There are three roots: The first root lies between x = -2 and x = -1, the second root

lies between x = 1 and x = 2, and the third root is x = 5 (exact value).

To find the first root by using the bisection method,

1% iteration:  Let x ==2and x =-1.
Xm:xr;xl N Xm:—1+2(—2):

Check the signof f(x ) = f(-1.5)= (-1.5)® =5(-1.5)% —2(-1.5) +10 =-1.625.

Since f (Xm)< 0, then for the next iteration X =X = -1.5 and X = —1(unchanged)

-15

2" iteration: ~ x =-15and x =-1.
The calculations must be repeated as in the 1% iteration and continued until the
required number of iterations is reached.

-4-
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It is more preferred to put the calculations in a table as below:

No. of N . X X F(x ) A:Xr_xl

Iteration (i) | ' "7 m 2
1 -2 -1 -15 -1.625 0.5
2 -15 -1 -1.25 2.73.... 0.25
3 -15 -1.25 -1.375 0.69.... 0.125
4 -15 -1.375 - 1.4375 -042.... 0.0625
5 - 1.4375 -1.375 - 1.40625 0.14.... 0.03125
6 - 1.4375 - 1.40625 - 1.421875 -0.13.... 0.015625

After six iterations the first approximate root is X —1.421875.

To find the second root:
By using the bisection method,

1% iteration:  Let x =2and x =1.

1+2
X =—=

X = — 1.5

m 2

Check thesignof f(x ) = f(L.5)= (1.5)% -5(1.5)®> — 2(1.5) +10 = -0.875.

Since f(Xm)< 0, then for the next iteration x =X =15 and X =1(unchanged).

2" jteration: x =15and x =1.  Andsoon.
X —X
i X X W o Nl f(x ) | A=
m 2 2
1 2 1 1.5 -0.875 0.5
2 1.5 1 1.25 1.64.... 0.25
3 1.5 1.25 1.375 0.39.... 0.125
4 1.5 1.375 1.4375 -042.... 0.0625
5 1.4375 1.375 1.40625 0.05.... 0.03125
6 1.4375 1.40625 1.421875 -0.07.... 0.015625

After six iterations the second approximate root is X ot ~1.421875.

-5-
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Example 2: Find the point(s) of intersection of y=Inx and y=2x-3 accurately to

three decimal places (i.e; £ =1x10~3).
Solution:

To find the point(s) of intersection we put y, =Yy, = In x =2x-3,

SInx-2x+3=0 = f(xX)=0 (Root finding problem)
So we must find the root(s) of f(x) where f(x)=Inx-2x+3.
Check the sign of f(x) at different values of x:
0.01 1 2

- 1.625 1 - 0.306

3
-1.9

4
-3.6

5
-5.39

X
f(x)

There are two roots: The first root lies between x = 1 and x = 2 and the second root

lies between x = 0.01 and x = 1. To find the first root by using the bisection method,

1% iteration:

Let X, =2 and X =1 =

X +X

2

X r

m

—

Check the sign of f(xm) = f(L.5)=In(1.5)-2(1.5)+3=0.40547.

Since f(xm)> 0, then for the next iteration X = 2 (unchanged) and X =X =1.5.

2" iteration:

X =2 and X =1.5.

The calculations must be repeated as in the 1% iteration and continued until A<¢.

i X, X X :Xr+XI f(xm) A:XFZX
m 2

1 2 1 1.5 0.405... 0.5

2 2 15 1.75 0.059.... 0.25

3 2 1.75 1.875 -0.12.... 0.125

4 1.875 1.75 1.8125 -0.03.... 0.0625

5 1.8125 1.75 1.78125 0.14.... 0.03125

6 1.8125 1.78125 1.79688 - 0.007.... 0.015625

7 1.79688 1.78125 1.78906 0.003... 0.00782

8 1.79688 1.78906 1.79297 -0.002... 0.00391

9 1.79297 1.78906 1.79101 - 0.0007.. 0.00196

10 1.79101 1.78906 1.79003 0.002... 0.00098<¢

After 10 iterations the first approximate root is X ~1.79003.

y ~In1.79003~0.582232 = the first point of intersection is (1.79003,0.582232).

-6-
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H.W:
The second point of intersection is (0.048673,-2.9026).
Note:
If we want to estimate the number of iterations required to find the above first

root to the given accuracy, then:

In 7% In 1-2
-3
nz% nz% —  n>9096.
n n

So we need 10 iterations.

2- Fixed point Method
A fixed point of a function g(x) is a real number p such that p=g(p).

Graphically, fixed points of a function y = g(x) are the points of intersection of
y=9(x) and y=xX.
Fixed point method is used to determine roots of a function f (x)as follows:
1- Rearrange the equation f(x)=0 inthe form x=g(x) (so that x is on the left
hand side of the equation).
2- Estimate an initial value to the root X. and substitute it into g(x) to get g(xi).

3- An improved estimation of the root is determined from X . = g(xi) and so on.

Notes:

1- Fixed point method has very slow convergence.

2- For determining an expected root, lies in the interval (a, b), a certain
expression of x=g(x) seems to converge to this root if the absolute value of

the slope of g(x) is less than the slope of y=x, that is
Xxe(a,b).

3- A certain expression of x=g(x) may converge to one root at more.

g'(x|<1 for all

4- If we can not get an expression of the form x=g(x), then we could add x to

both sides. For example, we can rewrite the equation sinx=0 in the form
X=SIN X+ X.
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Example 1: Find the maximum value of the function y = x®/3-1.1x? —3.1x

correct to three decimals.
Solution:
Maximum value of the function y occurs when y'=0,

y' =x%-22x-3.1,
Put y=0 = x*-22x-3.1=0 = f(x)=0 (Root finding problem)
So we must find the root(s) of f(x) where f(x)=x2-2.2x-3.1.
Check the sign of f(x) at different values of x: (not necessary)
X -2 -1 0 1 2 3 4
f(x) 5.3 0.1 -31 | -43 | -13 | -07 4.1

There are two roots: The first root lies between x = - 1 and x = 0 and the second root

lies between x = 3 and x = 4.
By using fixed point method, rearrange the equation f(x) =0 in the form x=g(x):

x?-2.2x-3.1=0,
either x2=22x+3.1 = x=+/2.2x+3.1 (the first expression)

or X.(Xx—2.2)=31 = x= 3'212 (the second expression)
X—2.
x?—3.1

or 22x=x*-31 = x=

(the third expression)

* For the first expression x=+/2.2x+3.1 ,
Convergence test: (not necessary)

1.1
X)=+4/2.2x+3.1 = 'X) = ———,
g(x) g'(x) o 31

- For the first root which € (-1,0),

11| 11|
(-1 = =1.16 > 1 Not Ok, '(0) = =0.62<1 Ok.
9D J22(-D+3.1 ° 9'0) /22000 +3.1]
Thus, this expression will not converge to this root.
- For the second root which € (3,4),
g’(3)\—‘ 11 §=0.35£1 Ok, —‘ 11 }—03231 Ok

V223 +31 g,(4)‘_\1/2.2(4) +3.1

Thus, this expression will converge to this root.
-8-
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1% iteration: Let X =3 = x=0(x) = x=9(3)=22(3+3.1=3114482.

2" iteration: X = 3.114482 = X, = 0(3.114482) = ,/2.2(3.114482) + 3.1 = 3.154657 .

The calculations must be repeated and continued until A<g¢.

i XL, TO) A=k —x)
0 3 3.114482 0.11....

1 3.114482 | 3.154657 0.04....

2 3.154657 | 3.168635 0.01....

3 3.168635 | 3.173483 8.2x107°

4 3.173483 | 3.175163 1.68x10°3

S 3.175163 | 3.175745 5.8x10"*<¢

Therootis x ~3.175745.
root

y(3.175745) = (3.175745)% / 3—1.1(3.175745)2 — 3.1(3.175745) = —4.924442.

Notes:

1- Another arrangement for the above table of calculations may be used as

below:

i X Ai:‘xi—xl_1
0 3 -
11]3.114482 0.11....
2 | 3.154657 0.04....
3|3.168635 0.01....
4 13.173483 8.2x10° 3
513.175163 1.68x10°3
6|3.175745 | 58x10 *<¢

2- If we choose another initial values to the root, this expression will always
converge to this root which lies in the interval (3,4), for example:

9.
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[ X A:‘x—x i X. Az‘x —X
ii-1 i Q-1
0 -1 0 7
1 |0.948683 1.94.... 1 | 4.301163 2.69....
2 | 2277521 1.32.... 2 | 3.544370 0.75....
3 |2.847902 0.57.... 3 |3.301153 0.24....
4 | 3.060292 0.21.... 4 | 3.219089 0.08....
5 | 3.135704 0.07.... 5 |3.190924 0.02....
6 | 3.162048 0.02.... 6 | 3.181200 9.7x10" 3
7317119 | 9.15x107° 7 | 3177836 |  33.10-°
8 | 3174372 3.17x107° 8 |3.176671 1.1x102
9 | 3.175471 11x10°2 9 3176268 | 4x10-4<g
10 | 3.175852 | 381x10 *<g

3.1
x—22"
Convergence test: (not necessary)

* For the second expression X =

3.1 , -3.1
g =—""0 = g=—,
X—2.2 (x—2.2)
- For the first root which € (-1,0),
o=t |_03<10k 0'0)=|—> |—064<1 0k
(-1-2.2)? (0-2.2)°
Thus, this expression will converge to this root.
- For the second root which €(3,4),
0'@)=| 21 =48> 1Not Ok, o'(@)=——>1 1-0.96<1 0k
(3-2.2)% (4-2.2)*
Thus, this expression will not converge to this root.
1% iteration: Letx =-1= x =g(X) = X = g(—1)=iz—0.96875.
0 1 (o] 1 (_1) _22
2" iteration: x, =—0.96875 = x_ =g(-0.96875) = 3.1 =-0.978304.

(~0.96875) — 2.2

The calculations must be repeated and continued until A<g¢.

-10 -
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i X Xi+1:g(xi) Ai:‘xnl_xi‘
0 -1 - 0.96875 0.031....

1 - 0.96875 - 0.978304 9.5%x10° 2

2 - 0.978304 - 0.975363 29%x10° 3

3 - 0.975363 - 0.976266 Ix10" *<¢g

Therootis x ~-0.976266.
root

y(~0.976266) = (—0.976266)% /3—1.1(~0.976266)2 — 3.1(~0.976266) =1.667862.

Thus, the maximum value of y is 1.667862, approximately.

Note:
2

If we want to know which root would the third expression x = X converge to,

then we could use the convergence test:

x?-3.1 , X
X) = = X)=—,
9(x) 55 9'(x) 11
- For the first root which € (-1,0),
-1 0
'(-1)|=—=0.91<1 Ok, '(0))=|—{=0<1 Ok.
gDl 5=

Thus, this expression will converge to this root.
- For the second root which €(3,4),

3
!3 | =
19'3)| 1

Thus, this expression will not converge to this root.

=2.7 > 1 Not Ok, 9'(4) =‘1il‘=3.6 > 1 Not Ok.

Example 2: Find the value of x which makes the function f(x)=(2—-x)e *'# equal

to 1. (¢ =1x1073)
Solution:

f(x)=1 = (2—x)e x4 =1,
L(2-xe **-1=0 = h(x)=0. (Root finding problem)
So we must find the root(s) of h(x) where h(x) =(2—x)e */* -1,
Check the sign of h(x) at different values of x: (not necessary)
X -2 -1 0 1 2 3
h(x) 1.4 1.3 1 -022 | -1 | -147

Thus, there is a root lies between x =0 and x = 1.

-11-
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By using fixed point method, rearrange the equation h(x) =0 in the form x=g(x):
1

e—x/4’

(2-x)e*4-1=0 = (2-xe¥4=1 = 2-x=
2—-x=e¥%* = x=2-eX4 (inthis expression g(x)=2-e*'*)
1% iteration:  Let X =1 = x=9g(x) = xlzg(l):Z—e(l)"‘:0.715975.

2" iteration: x =0.715975 = x_ =g(0.715975) =2 —-e(®"*%79/ = 0.803987 .

The calculations must be repeated and continued until A<g¢.

i X [x =g(x) Ai:‘x —x‘
i+1 ' i+1 i

0 1 0.715975 0.28....

1 0.715975 0.803987 0.08....

2 0.803987 0.777379 0.02....

3 0.777379 0.785485 8.1x10° 3

4 0.785485 0.783021 2 4x10° 3

5 0.783021 0.783771 75x10" %<¢g

Therootis x ~0.783771.
root

Note:
If we start with another possible expression of x=g(x) like:

(2-x)e ¥4 -1=0 = e—x/4:_21 — e¥4=2_x,
—X

E:In\Z—x\ = x=4In)2—x. (Inthis expression g(x)=4In|2 - x])

Then, we get the following results:

i x| % =09(x) A=px x|

0 1 0 1

1 0 2.772589 2.77....

2 2.772589 -1.032034 3.03....

3 -1.032034 4.436934 5.46.... (divergence)

Thus, this expression does not converge to the required root. Therefore we must
search for another expression of x=g(x).
-12 -
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3- Newton-Raphson Method
This is one of the more popular methods used for solving non-linear algebraic

equations. It is also known as Newton's method or the tangent method. It is
convergent faster than the previous methods. The formula of this method can be
derived as follows.

Let X. be an estimation to the required root of a given function f(x). A better

estimation X, can be obtained by using the zero of the tangent to the function at X
The tangent line passes the x-axis at the improved root X, The value of X, can

be determined as follows:
f ’(xi) =tand, but from the shown figure:

f(x) f(x) )
tanf=—"— = . f'(x)=——1—,
X —X it X —
i i+1 i i+1
f(x) f(x)
or X=Xy = = Xig =X = = >
F(x) f(x)
Notes:

1. Newton-Raphson method has slow convergence in regions of multiple
roots.

2. Near the maxima and minima points, Newton-Raphson method is either
convergent to these points or convergent to a non-required root or
divergent.

Example 1: Find the positive root of (x> —4sin x) to an accuracy of & =1x10"°.
Solution:
Let f(x)=x?-4sinx, and check the sign of f(x): (not necessary)

X 0 1 2 3
f(x) 0 -2.366 | 0.363 8.4

There is a positive root lies between x =1 and x = 2 and it is closer to x = 2.

To find this root by using Newton-Raphson method,
1% iteration:  Letx, =2,

f(X)=x2—-4sinx = f(xo):f(2):(2)2—4sin2:0.362810,

-13 -



Numerical Analysis / Civil Eng. / 3™ Class

f'(x)=2x—4cosx = f ’(xo) =f'(2) =2(2) — 4c0s2 =5.664587,
f(x)
X, =X == = X = —le.&?ﬁ%l.
f (xo) 5.664587
2" jteration: X =1.935951.
The calculations must be repeated as in the 1% iteration and continued until A<¢.
f(x)
. ' _ _ I _
i X f(x) ) | =% =0 Ai—‘x”l—xi‘
1
0 2 0.362810 5.664587 1.935951 0.064....
1 1.935951 0.011623 5.300277 1.933756 29%10° 3
2 1.933756 1.18x10°° 5.287682 1.933754 292%10° 8
3 1.933754 1.25%x10" 8 5.287671 1.933754 ~23x10 "<¢g

After 4 iterations the positive root is X ~1.933754.

Note:

Another arrangement for the above table of calculations may be used as below:

_ f(x) X2 —4sinx

' X Xig =Xi =~ =X~ I A‘:‘X' _X"
f’(xi) 2x. —4cosx belo

0 2 1.935951 0.064....

1 1.935951 1.933756 22%x10 3

2 1.933756 1.933754 22%10°8

3 1.933754 1.933754 ~2.3x10" '<¢

Example 2: Find the root of f(x) =(2—x)e™*/* -1 such that |f (x)| < 1x107°.
Solution:
By using Newton-Raphson method,
f(xX)=(2-x)e **-1,
F/(x) = (2= X)e 4 (-1/4) +e-X/4(-1) = f’(x)=(§—g)ex’4.
1% iteration:
f(x )=f(3)= (2-3)e ¥* —1=-1.472366,

4 ’ 3 3 -3/4
f'x)=1f'R)=(~-->)e =-0.354275,
(x)=1@=(;~>)

Let x, =3, (chosen arbitrary)

-14 -
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f(x) —1.472366
X, =Xy — = X =3-——"—
—0.354275

=-1.156000.

2" iteration: X, =-1.156000.

The calculations must be repeated as above and continued until | (x)| < 1x1075,

i X f(x) f'(x) X, =X — f(xi)
' i i i WL I(Xi)
0 3 - 1.472366 - 0.354275 - 1.156000

1 - 1.156000 3.213550 - 2.388479 0.189438

2 0.189438 0.726814 - 1.385448 0.714043

3 0.714043 0.075722 - 1.105445 0.782542

4 0.782542 0.001130 -1.072594 0.783596

5 0.783596 | 34x10" ®<1x107°

Hence the root is X 0.783596.

Note:
If we choose x, =8 = x,=34.778112 = X, =869.152844. (divergence)

4- Modified Newton Method
To find the roots of a function f(x), define a new function u(x) given by

u(x) = :,(())(()) ................................. (1)

The function u(x) has the same roots as does f(x), since u(x) becomes zero

everywhere that f(x) is zero. If f(x) has a multiple root at x=c of multiplicity r

(this could occur, for example, if f(x) contained a factor (x—c)"). The u(x) may be

readily shown to have a single root at x=c.

f(X)=(x-c) = f'X)=r(x-c) 1,

e TR GO P S ) MY W G}
f'(x) r(x—c)" ! r
Since Newton-Raphson method is effective for simple roots, we can apply this
method to u(x) instead of f(x),
u(xi)

X+ =X — :
i+1 i U’(X_)

FromEq (), oy LFOP =100 oy FO0.1"00.
[P [P

-15-
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The advantage of this method over the conventional Newton's method is in finding
multiple roots with a faster convergence.

Example 1: Find the root(s) of the function f (x) = x*> —2.5x+1.5625 to & =1x10"°.
Solution:

Check the sign of f(x) at different values of x:
X -1 0 1 2 3 4
f(x) | 5.06.. 1.56.. | 0.06.. | 0.56.. | 3.06.. | 7.56..

There is an expected root(s) lies between x =1 and x = 2.
To find this expected root (if any): by using modified Newton method,
1% iteration:  Let X =1,

f(X)=x?-25x+15625 = f'(x)=2x-25 = f"(x)=2,
f(xo) =1(1)=00625 = f'(xo) =f'1)=-05 = f"(xo)z ") =2,
u(x) =1 N u(x) = 2925 _ g 105,
f'(x) -0.5
wx)=1— 1) w(x)=1-(0:0629@) _ 5
[f'O0F° (-0.5)°
u(x ) _
Xy =Xy = —— = X, =1- 0.125 =1.25.
u'(x )
2" iteration: x =125,
The calculations must be repeated as in the 1% iteration and continued until A<¢.
u(x )
i | X UX) [ U'(X) | X=X ———~ | A =‘x_ —x_‘
! ! ' u (xi) i+1 i
0| 1 |-0.125| 05 1.25 0.25
11125 0 1.25 0<e¢

After 2 iterations the root is L =1.25.
Check for multiple root, f’(xroot) =1'1.25)=0 = X o =1.25 is a multiple root.

Note:
If we use Newton-Raphson method to find the above root, with the same initial

value, then we will need more than 15 iterations to get the required accuracy. Thus,
Newton-Raphson method has a very slow convergence in determining multiple roots.
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Example 2: Find the smallest positive root of the function

f(x)=x*—-8.6x3-35.51x% +464.4x—-998.46. (&£=1x10"°)
Solution:
Check the sign of f(x) at different values of x:
X 0 1 2 3 4 5 6 7 8
f(x) | - 998.46 | - 577.17 | - 264.5|-76.05 | - 3.42 | - 14.21 | - 52.02 | - 36.45 | 136.9

There is a root lies between x = 7 and x = 8, but there is an expected root(s) lies

between x =4 and x = 5.

To find this expected root, if any, by using modified Newton method,

1% iteration:

f(x)=x*—-8.6x3-35.51x2 +464.4x-998.46 =

Let x =4,
0

£'(X) = 4x3 — 25.8x% —71.02x + 464.4
f"(x) =12x% —51.6x—71.02

_
u(x) = ) =
wx)=1- T
[f' (0T
u(x )
X, =Xy ——— =
u’(xo)
x, =4.308129.

2" jteration:

f(x )= f(4)=-3.42,

= f'(x)=Tf'(4)=2352,
= f7(x)=1"(4)=-85.42,
u(x) = —>*2 _ _0.145408,
23.52
w(x)=1- 342)8542) ) 471906,
(23.52)?
40145408 _ 4 ang109.
0.471906

The calculations must be repeated as in the 1% iteration and continued until A<e.

u(x.)
i X. u(x.) u'(x.) Xig =Xi——— | A =‘x_ - X.‘
u (Xi) i+1 i
0 4 - 0.145408 | 0.4719062 4.308129 0.308129
1 4.308129 | 4.0687x102 | 0.5009915 4.300008 8.123x10°3
2 4.300008 | 4.0315x10~ 8 | 0.5000996 4.300000 8x10° % < ¢

After 3 iterations the positive root is X o= 4.3.

Check for multiple root, f’(xroot) =f'(43)=0 =

-17 -
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3- Numerical Solution of Set
of Algebraic Equations

Introduction

The solution of set of algebraic equations is an important step in wide variety
of engineering problems, such as the numerical solution of differential equations, the

structural analysis, network analysis, ....etc.

Iterative methods

In the these methods an initial set of values of the unknowns are assumed to
determine improved approximate values of these unknowns which in turn are used to
determine better approximations and so on. This iteration continues until sufficiently
values are obtained.

Solution of Set of linear algebraic equations

1- Jacobi iteration

The system of equations:

a X +a X +........ +a X =b

11 1 12 2 Im m 1

a X +a X 4. +a X =b

21 1 22 2 2m m
........................................................... (1)
a X +a X +....... +a X =b

ml 1 m2 2 mm m m
Can be written as:

xlz[bl—(a R T +a X )]/a11

x2 = [b2 — (a21x1 T + amem)]/ a22
................................................................ (2)
X =[bm — (amlx1 ta X+ )] a_

In this method initial trial values are assumed which are substituted in the
iterative equations (Eq.2) of the unknowns to obtain better approximations of the
unknowns that are used to obtain new improved approximations. This method
converges if :

n

‘aii‘> Z
j

aij‘ 1=12,....... nbuti=j) ... (3)
1
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I.e. the absolute value of the element located on the main diagonal in each row is
greater than the sum of the absolute values of the other elements in that row. So the
procedure of solution in Jacobi method is as follows:

1- The equations are rearranged for condition of convergence in Eq.3.

2- The resulting equations are written in the iterative expressions of EQ.2.

3- A set of initial values of the unknowns are assumed.

4- These values are substituted in the iterative equations to obtain new values.

5- Step 3 is repeated until the required accuracy is achieved.

Example 1: Solve the following set of equations:
4x -8y +z+21=0,
—-2X+Yy+5z2-15=0,
4x—-y+z-7=0.

Solution:.

Use Jacobi iteration,

Step 1: Rearrange the equations for convergence:
dx—-y+z=7,
4x -8y +z=-21,

—2X+Yy+5z=15.
Step 2: Find the iterative equations:

x =(+y —z)l4,
i+1 i i
Y. ., = (21+4x +2)/8,
I + 1 |
z =(15+2x —y)/5.
i+1 i i
Step 3: Assume initial values:
X =y =12 =1.
Step 4: Substitute the initial values into the iterative equations to get new values:
1% iteration:
X =(7+1-1)/4=1.75,
Yy, =(21+4(1)+1)/8=3.25,
Z =(15+2(1)-1)/5=3.2.
2" iteration: x =175, y =3.25,and z =3.2.
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The calculations must be repeated as in the 1% iteration and continued until the
required accuracy (if any) is achieved.

No. of X y 7
Iteration (i) : : :
0 1 1 1
1 1.75 3.25 3.2
2 1.7625 3.9 3.05
3 1.9625 3.8875 2.925
4 1.990625 3.971875 3.0075
5 1.99109 3.99625 3.001875
—2 —4 —3

2- Gauss-Seidel iteration

As (xl)i » Is expected to be a better approximation than (xl)i ,then it appears
more advantageous to use the value of (xl)i » in determining (xz)i » rather than
using (xl)i. Similarly, the value of (xl)i o and (xz)i L, are used to determine the
value of (x3)i L and so on. The using of this procedure will , in general, yield results

that are more rapidly convergent than the conventional Jacobi iteration.

Example: Solve the following set of equations:
4x -8y +z+21=0,
—-2X+Yy+52-15=0,
4x—-y+z2-7=0.

Solution:.

Use Gauss-Seidel iteration,

Step 1: Rearrange the equations for convergence:
dx—-y+z=17,
4x -8y +z=-21,

—2X+Yy+5z2=15.
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Step 2: Find the iterative equations:
X =(7+y —z2)/4,
I+ | 1
y =(@Q1+4x +12)I8,
1 i+1 i

I+

% :(15+2Xi Y +1)/5'
Step 3: Assume initial values:
X =y =12 =1
Step 4: Substitute the initial values into the iterative equations to get new values:
1% iteration:
X = (7+1-1)/4=1.75,
y, = (21+4(1.75) +1)/8=3.625,
z = (15+2(1.75) — 3.625)/5=2.975.
2" iteration: x =1.75, y =3.625,and z =2.975.

The calculations must be repeated as in the 1% iteration and continued until the
required accuracy (if any) is achieved.

[ X y Z
| | |
0 1 1 1
1 1.75 3.625 2.975
2 1.9125 3.953125 2.974375
3 1.994688 3.994141 2.999047
—2 —4 —3

Solution of Set of nonlinear algebraic equations

These equations can be solved by the Gauss- Seidel iteration.

Example 1: Solve the following system:
X+4y+12>-18=0,
X° +y+4z-15=0,
4x+y?+7-11=0.
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Solution:
Use Gauss-Seidel iteration,
Step 1: Rearrange the equations for convergence:

Ax+y? +z=11,

X +4y+2°=18,

x? +y+4z=15.
Step 2: Find the iterative equations:

X =@1- y%4 —12)14,

I + 1
—_(18_ _ 2
yi +1 _(18 Xi +1 Z I)/4’
z :(15_X2i+1_y

i+1 i+1

Step 3: Assume initial values:

)/ 4.

X =y =2 =1.
Step 4: Substitute the initial values into the iterative equations to get new values:
1* iteration:

X = (11-1* -1)/4=2.25,

y =(018-225 ~1?)/4=3.6875,

z =(15- 2.25% —3.6875)/4=1.5625.

2" jteration: x =2.25, y =3.6875,and z =1562.

The calculations must be repeated as in the 1% iteration and continued until the
required accuracy (if any) is achieved.

No. of X y 7
Iteration (i) : : :
0 1 1 1
1 2.25 3.6875 1.5625
—1 —2 —3
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Example 2: Solve:

x% + xy =10,
y +3xy? =57.
Solution:

Use the concept of Gauss-Seidel iteration,
Find the iterative equations:

Xi+1:\/lo_xiyi ’

Assume initial values:

X =Y =1.

Step 4: Substitute the initial values into the iterative equations to get new values:
1% iteration:

X =/10- (@) =3,
y = °1=1_ 5 agaazs.
1\ 3(3)
2" iteration: X =3,y =2494438.

The calculations must be repeated as in the 1% iteration and continued until the
required accuracy (if any) is achieved.

IS occurred.

No. of X y
Iteration (i) : :
0 1 1

1 3 2.494438

2 1.586407 3.384172

3 2.152052 2.881771

4 1.948917 3.042387

5 2.017583 2.985723

—2 —3

-23 -
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4- Taylor Series

Introduction

Taylor series is the foundation of many numerical methods. Many of numerical
techniques are derived directly from Taylor series, as are the estimates of the errors
involved in employing these techniques.

Maclaurin series

Suppose that the value of the function f(x), shown in the figure, and the
values of all of its derivatives at x=0, i.e. f(0), f'(0), f"(0), f"(0),..., are known

and the value of this function at a point x is to be determined. One method is to
approximate f(x) by its tangent line at x =0, which has the equation:

p(x)=c +cx. (polynomial of degree 1)
At x=0, p(x)=p0) = p0)=c +c(0),
C = p(0), but p(0)=f(0) = C = f(0).
P =c,.
Atx=0, p(x)=p'0) = pO)=c,
but p'(0)=f'(0) = ¢ =1f'(0).
. p(X)=f(0)+xf'(0) = f(X)~ f(0)+xf'(0).
The accuracy of the approximation will be better improved as the degree of the
approximation polynomial is increased. If a polynomial of infinite degree is used,

then the following approximation is obtained:

2 3 4

r X " X " X v
F0)=F(0)+xt(0)+ = "0+ F@) +7 17O ,

© k
or simply f(x):Z%f"(O).
k=0

The above series (polynomial) is called the Maclaurin series (polynomial).
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Taylor series

Maclaurin series gives an approximation of a function f(x) in the vicinity of
x =0. the more general case of approximating f(x) in the vicinity of an arbitrary
value x=a is now considered. The basic idea is the same as before. Thus, if a
polynomial of infinite degree is used to approximate a function f(x) which its value

and all its derivatives' values are known at x=a, then the following polynomial will
obtained:

F(x) = f(a)+ (x—a)f'(a)+ X =) 2) f"(a) + (X ) fr(a)+ X a) FY0) +.....,

orsimply f(x)= Z% f¥(a).
k=0
The above series (polynomial) is called the Taylor series expansion for the

function f about x=a. It is obvious that Maclaurin series is a special case of Taylor
series when the point of expansion is x=0 (i.e. a=0).

Another used formula of Taylor series expansion of a function f about X,
where its value and all its derivatives' values are known at the point x, is

2 4

f(x+h)=f(x)+hf (x)+h f”(x)+h f’”(x)+h fYX)+...... :

Order of error
The error in the value of f(x) which refers to the error resulted from omitting

n+1

terms beyond the term contains the n™ derivative is denoted as O(x — a)
If we take one term of Taylor series, then
f(x)=f(a)+0O(x—a),
if we take two terms, then
f(x)= f(a)+(x—a)f'(a)+O(x—a)?,
and if we take n terms, then
(x-a)"""
(n-1)!

It is obvious that the error decreases as its order increases, i.e;

f(x)=f(@)+(x- a)f(a)+( Za) f'"(a)+....+ f"*(@)+0(x—a)".

o(x-a)"*'<Oo(x—a)".
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Error in truncated Taylor series
The difference R (x) (also called the error or remainder) between the exact
n

value of the function f(x) and the value obtained from the n™ Taylor series T (x) is
n

Rn(x) = f(X) —Tn (x), which is known as the n™ remainder, where

n Ak © Yk
Tn(x):z(x kl"") f'@ and R (Y= Y (X kla) f4(a).
k=0 ) k=n+1 )

Thus the value of f(x) can be written as:
f(x) :Tn(x) + Rn(x), which is called Taylor formula with remainder.

The upper bound of the remainder in a truncated series can be estimated by:

R(x) <

MfIr “ : (Lagrange's form)

rl ma

where r is the power of (x —a) in the first truncated term and the maximum value of

the derivative f' occurs at some point c lies in the interval [x,a].

Notes:
U

kK+1

1- Let the power series is Zuk . If the limit f(X) = lim
K=0 k - o
I- The series converges when L <1.
Ii- The series diverges when L >1.
Iii- The test fails when L =1.

=L exists, then

k

2- The number of terms of a given power series ZU o that are required to compute
k=0

X correct to a given accuracy ¢, cab be estimated from ‘Uk‘ <XE .

Example 1: Find the Taylor series expansion for the function f(x)=e* about x=0.

Then use it to find f (x) =e®° to an error of order O(x)® and compare
it with the exact value.

Solution:
When the expansion is about x =0, then Taylor series reduces to Maclaurin series.
2 3
f(x)=f(0)+xf'(0) + % £7(0) + % £7(0) 4o |

fx)=e* = f'()=f"(x)=f"(x)=e* = f(0)=f'(0)=f"(0)=f"(0) =€’ =1,
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2 3 2 3

X _ L X = 242
. f(x)=e —1+x.(1)+2!.(1)+3!.(1)+ ......... , ore’=1+x+ 2!+3!+ ......... .

Tocompute e?* = e*=e’® = x=05,

2
(0.5 =1.625.

2
e® =1+ O.5+(0'25|) +0(05)° = e»=1+05+

The (exact) value is e®® =1.648721(from the scientific calculator).

The percent relative error P = ©@c = BRIl 100 = _[1.648721-1.625 x100=1.44%.
exact 1.648721 ‘
Example 2: Find the Taylor series expansion of f(x)= e*/; about x=0.

Solution:
When the expansion is about x =0, then Taylor series reduces to Maclaurin series.
2 3

fuyf@+ﬁmp_4%m 31O+ |

f(x)=e‘/; = f(O):e‘/— =1,

x Vo
! \/; 1 -1/2 /] \/7 ’ e 1 -
f'(x)=e¥".=x = f'(X)=—= = f'(0)=——===. (undefined
) 2 () 24/x © 2,0 o )
"+ Since f'(0) does not exit (undefined) = .. f(x):e‘/; can not be expanded
Vx

about x=0, or the Taylor series expansion of f(x)=e“" about x=0 does not exist.

Example 3: Use Taylor series to determine the square root of 13 to an error of order

O(x)*. Estimate the error and compare with the exact value.
Solution:

Taylor seriesis f(x)=f(a)+(x—a)f'(a) +(x—2_la)2 f"(@)+0(x—a)’.

.+ The required is a square root = .. Let f(x)=+/X.
Since the nearest number, of known square root, to 13 is the number 16, so we choose

X =16 to determine the square root of any number (i.e. find Taylor series expansion
of f(x)=+/x about x=16) and then to compute the required square root.
f(x)=+/x = f(a)="f(16)=+16=4,

~ tae-_L - L1

1 1
F0=27x 2016 2(4) 8
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, -1 , -1 -1 -1 -1
f (X)_ﬁ - (16)_4\/163 4,/16%.(16) S 406)#) 256
F(9 =X =4+ (x~16).2 1, (x-16) .256+O(x—a)3.
Now to compute X = \/_:\/_ = x=13,
J13=4+(13- 16). 1, ds3 216) =3.607422.

The error can be estimated from R(x) <

x=a) ¢, “
r! ma

Since the first truncated term in Taylor series contains the 3" derivative (i.e. r= 3),

1/)3
.‘ R(X) S (13 16) f!!/ ’
3l max
3
fm(x)___ —5/2
42 8(
f"(x)=f"(13) = 3 _615x10"* and f"(a)=f"(16) = 3 =3.66x10"*,
8v13° 8116°

o f" =6.15x10"% = R(X)< 6.15x10" 4

max

3
(13-16)” _616) — R(X)<2.78x1073.

The (exact) value is +13 =3.605551 (from the hand calculator).
The absolute error A =|exact — approx| =[3.60551 — 3.607422 =1.87 x10™ > < 2.78x10 ™ °

Example 4: Find the interval of convergence of Maclaurin expansion for sin x. How
.1 :
many terms are needed to compute sin > accurately to 6 decimals?

Solution:.

2 3

Maclaurin series is f (x)= f (0) + xf (O)+—f”(0)+ f”'(O)+ ......

f(x)=sinx = f(0)=sin0=0,
f'(x)=cosx = f'(0)=cos0=1,
f"(x)=-sinx = f"(0)=-sin0=0,
f"(x)=—cosx = f"(0)=-cos0=-1,

X2 XS X3 5
" f(x):sinx:0+x(1)+E.(0)+§.(—1)+ ....... = SINX=X——+——....... :

3 9
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Convergence test: Check |im |—%*1],
k > o k
3 5 2k+1
sinx:x—X—+X—— ....... = sinx= Z( )
3 5l (2k +t’
k=0
X2(k+1)+1 X2k+3
U 2(k +1) +1)! 2k +3)!
lim % = lim (2(k+1) )'=|im (2k+3)! )',
k — oo Uk k > o XZkJrl k —> o X2k+1
(2k +1)! (2k +1)!
g X2k+3 (2k+1)|‘ X2k+3 (2k+1)|‘
T T P ™ |2k +3)(2k + 2) (2K + D! 2k o1 i
2 2 2
= lim X . X s ~0<1.
@K+ I)(2Kk+2)| |20+ 3)(20+2)| | oo

.. The series is convergent for all values of xeR.
.. The interval of convergence is (—oo,+x).

Estimation of terms No.: Use ‘Uk‘ < X.E£,

Here £ =1x10"% and sinx:sin% = X:E,

(1j2k+1
\2) 1 1x10"°) = L P

2k +1D)! 2 22k +D)! 9108

2212k + 11> 2x10° = By trial and error k =4 = ... we need 5 terms.

Example 5: Check whether the Maclaurin expansion for % is valid to compute
— X

471 or not.
Solution:.

3

Maclaurin series is f(x)= f (0) + xf (O)+—f”(0)+ 3 f"(0) +......
f(x)z—:(l—x)‘l = f0)=@1-0)""'=1,
1-Xx

f'()=-11-x)"2.(-D=01-x)"% = f'(0)=(1-0)"?=
f"()=—200-x)".(-)=21-x)"° = f"(0)=2(1-0)°=
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F7(x)=2.(-3)L—x)" *.(c)=6(1-x)"% = f"(0)=6(1—0)*=
" f(x)=$=1+x(1)+X?2!.(2)+X?j.(6)+ ....... = Lle+x+x2+x3+ ...... :

U
Convergence test: Check [im [—X*1|,
k > o k
1 1 <
e =l XX EX = —=ZXK-
1-x 1-x
k=0
U k +1
. k +1 - -
Ilm U—+: ||m — ||m ‘X‘:‘X‘.
K = o K k > o X k > o

.. The series converges when \x\ <1 = either x<lor —x<1 = x>-1.

.. The interval of convergence is (-1,1).

1 = it = 1-x=4 = x=-3¢(-1)).
1-x 4 1-X

. Thus, the series is not valid to compute 4~ (since it will diverge).

Tocompute 4! = 47'=

Example 6: After five seconds, the following information of a moving body is
measured: position =25 m, velocity = 10 m/s, and acceleration = 2
m/s®. Using the principal of Taylor series, estimate the position after

another five seconds.

Solution:.

Taylor seriesis f(t)=f(a)+(t—a)f (a)+( o )’ f'@-+...... :
If the position is f (t), then the velocity is f'(t) and the acceleration is f"(t).
Expanding the function f(t) aboutt =5 s yields:

ft)=f(5)+({t-5)f'(5 +(t_2—|5)2 f"(5) + O(t)°,

f(t) = 25+ (t - 5)(10) + . ‘2:5)2 (2) +0(t)°.

2
Att=10s = f(10) =25+ (10 -5)(10) + {0 ;5)

(2) =100 m.
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5- Numerical Differentiation
(Finite Difference Calculus)

Introduction

Numerical differentiation is the process of finding the numerical value of
a derivative of a given function at a given point. In numerical analysis, numerical
differentiation describes algorithms for estimating the derivative of a mathematical
function using values of the function and perhaps other knowledge about the
function.

Forward and backward differences

Consider a function f(x) which is analytical (can be expanded by Taylor
series) in the neighborhood of a point x as shown in the figure. We can find f(x+ h)

by expanding f(x) in a Taylor series about x:

2 3 fix) backward

f(x+h)=f(x)+hf'(x) +h— f"(x) +h— f"(x)+..... 1 forward N Jeentral
2! 3! v .

solving for f'(x) yields:

M=) _h s 1’

00~ RS I WIORIR

9 h AR I N
x-h X x+h
(-1) () (i+1)

or f'(x) +0(h).

_f(x+h)—f(x)
- h

This equation represents the first derivative of f(x) with respect to x which is

accurate to within an error of order h. employing the subscript notation:
f(x)= fj and f(x+h)= fJ_ . then

f —f Af

f;:%m(h) or fj’=Tj+O(h),

Af
where Af; is the first forward difference of f at j, and T‘ Is the first forward

difference approximation to f' at j with an error order of h.
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Similarly, we can find f(x—h) by expanding f(x) in a Taylor series about Xx:

h2 " h3 m
flx=h)=F(=hF(x)+ - () = £+

solving for f'(x) yields:

f)—f(x=h) h_, = h*_,
—f"(X)——F"(X)—.....,
h +2! () 3 ()
f -1 \% 8
or simply f{z'T’_lJrO(h) or f-'=TJ+O(h)’

f'(x) =

]

\%#
where V£, is the first backward difference of f at j, and T’ is the first backward

difference approximation to f' at j with an error order of h.

How to find higher order derivatives

To find f"(x), using Taylor series expansion of f(x+h) and f(x+2h)

about x gives:

f(x+h)=f(x)+hf (x)+h 1‘”(x)+h ")+, (1)
f (X +2h) = f(x) + 2hf (x)+42 f"(x) + 8h — ")+ ()

Multiplying Eq.1 by 2 and subtracting Eq.1 from Eq.2, then solving for f"(x) yields:
f(x+2h)—-2f(x+h)+ f(x) Y
h2

f"(x)= (X)—.....,

fo—2f +f A2
or simply, /=% 2‘” Lyo(h) or f/'=
h

where A fj is the second forward difference of f at j.

Similarly, by using the Taylor series expansion of f(x—h) and f(x—2h)

about x, we can get:
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f —2f +f V2§
j

fr= L JZ240(h) or fl=—1+0(h),
h? h?

where V?f is the second backward difference of f at j.
]

Generally, any forward or backward difference may be obtained starting from
the first forward or backward difference by using the following recurrence formulae:

Af =AA""f) and V" =V(V"1f).
J J J J
For example,
A f =AAF )=A(F —Ff)=AF —Af =(f —f )—(f —f)
J J i+l J i+1 J j+2
=f -2f +f.
j+2 j+1 j
Thus, the derivatives of any order, with an error of order h, are given by:

d"f A'f d"f V"
-1 10(h), or - 1,0().
dx" h" dx" h"

Note: The 1% forward and backward difference approximations of O(h) are exact for

1% polynomials (straight lines), and the 2" forward and backward difference
approximations of O(h) are exact for 2" degree polynomials. Generally, the

n" difference approximations of O(h) for f"(x) are exact for polynomials of

n-degree.

How to find more accurate approximations
More accurate expressions for derivatives may be found by taking more terms

in the Taylor series expansion. For example, to find f’(x) with O(h)?:
h? h
f(x+h)= f(x)+hf’(x)+§f"(x)+§f’”(x)+ ..... :
f(x+2h)—2f(x+h)+ f(x)

hZ

but f"(x)= + O(h), substituting above:
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h2[ f(x+2h) = 2f (x+h)+ f(x) h?

()= (0 +hf () + = . +O(h) [+ 1709 +..

solving for f'(x) yields:
— f(x+2h)+4f(x+h)—3f(x)
2h

-f +4f -3f
2

or simply, fl=—>" 2hj+1 L +0(h)?.

Note: This expression is exact for polynomials of degree 2 and lower (since the error

f'(x) = +0(h)?,

involves only third and higher derivatives).

Central differences

Using Taylor series expansion of f(x+h) and f(x—h) about x gives:

h? h?

fxHh) = F0)+ G0+ 2 1700+ 2 1700 4 (3)
h? h?

fx=)= ) =h'(0+ 2 1700 =2 F" 00+ 4)

Subtracting Eqg.4 from Eq.3 and solving for f'(x) yields:

_f(x+h)—f(x=h) h?
2h 3

f —f

or simply, fj’:%ﬂLo(h)z-

f'(x) F7(X) = oo |

Note: This expression is exact for polynomials of degree 2 and lower.
To obtain f"(x), one additional Taylor series expansion in each direction is

required. In general:

d"f V"f + A" f

I dxni2 12012 1 O(h)? n is even,
dx" 2h"
d"f  Vv"f +A"f

i_ j+(n-1)/2 J-(“—l)’ZJro(h)2 n is odd.
dx" 2h"
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Note: The following table gives the most used finite difference approximations:

FORWARD DIFFERENCES BACKWARD DIFFERENCES Error
First Derivative First Derivative
- hittia e it o(h)
i~ h i~ h
f,_—3f,-+4f,-+1—f,-+z f,_3fj—41:j_1+fj_2 O(h)2
i~ 2h i~ 2h
Second Derivative Second Derivative
f-2f +f. f-2f +f.
n_ ] j+1 j+2 r_ j-1 -2 O(h
fr= 0 f/= = (h)
fr_ 2fj—5fj+1+4fj+2—fj+3 fr_ 2fj—5fj_1+4fj_2—fj_3 O(h)z
j h2 j h2
Third Derivative Third Derivative
en_ 148003004 T en_ 78080 T O(h)
j h3 j h3
f-m:—5fj+18fj+1—24fj+2+14fj+3—3fj+4 - 5fj—18fj_1+24fj_2—14fj_3+3fj_4 O(h)z
J 2h3 i 2h3
Fourth Derivative Fourth Derivative
- fj—41“j+1+6fJ.+2—4fj+3+fj+4 - fj—4fj_1+61EJ._2—4fJ._3+fJ._4 och)
i h# i h*
v _ 3fj—14fj+1+26fj+2—24fj+3+11fj+4—2fj+5 v _ 3fj—14fj_l+26fl._2—24fj_3+11fj_4—2fj_5 O(h)2
j h? i h?
CENTRAL DIFFERENCES Error
First Derivative
—f. +f. 2
r_ j-1 j+1 O h
fi=—2n )
f. . -8f +8f —f.
' j-2 j-1 j+1 j+2 4
i 12h O(h)
Second Derivative
f..—2f +f. 5
n_ j-1 J i+l h
f == O(h)
—f _+16f. -30f.+16f. —f.
n_ j-2 j-1 j L T j+2 O(h 4
fJ 12h2 (h)
Third Derivative
e —fj_2+2 fj_1—2 fj+1+fj+2 O(h)z
] 2h3
f. .—8f. _+13f _13f. +8f. .—f.
m_ _J-3 j-2 j-1 j+1 j+2 j+3 4
= L o(h)
Fourth Derivative
(v _ f,,—4f, +6f—4f, +f. O(h)?
i h¢
(v _ —1EJ._3+12fJ._2—39fj_l+56fj—39fJ.+l+12fJ.+2—fj+3 O(h)4
. 6h4
j
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Example 1: Find f'(x) at x=1 for the function f(x)=e*. Compare with the exact

answer. (Use h=0.1)
Solution:

By central difference approximations with O(h)?,

—f_ +f_ ° —o— °
fj’: i-1 j+1 +O(h)2, Qg 1 ]:.l
2h j-1 J J+1

At x=1 = j=1, j+1=x+h=1+01=11, and j—1=x—h=1-0.1=0.9.

_ .09 | .11
L HON+TAD gy o285 700815,
2(0.1) 0.2

(D)

The (exact) value is e' =2.718282 (from the scientific calculator).

exact — approx.| <100 — 2.718282 — 2.722815|

Percent relative error P= x100=0.17%
exact | 2.718282 |

Notes:
* If we use forward difference approximations with O(h),

-f +f .
’ J ]+
fj=—t 1t eom),
B 1 Al
prays DTN gy €T ) 858842,
0.1 0.1

The (exact) value is e' =2.718282 (from the scientific calculator).

2.718282-2.858842] 0 oo
2718282 |

* If we use backward difference approximations with O(h),

f —f

/] i j—1
==t o),

Percent relative error P=

f') ~ ~ 2.586787 .

f'(D) =
0.1 @ 0.1

Percent relative error P= |2'718282 _ 2'586787|
| 2718282 |

fO-f09 _ e' —e%?

x100=4.8%.
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Example 2: Given the function f(x)=(x+2)*, find f'(2) correct to three decimals.

Solution:

Use central difference approximations with O(h)?,

fro_ ot +0(h)2.
! 2h
[ —0— L
1% iteration: Take h, =0.2, jl.'f 12 2J+21

At x=2 = j=2 , j+l=x+h=2+02=22, and j—1=x-h =2-02=18.

LB+ f(22) ~(18+D)" +(22+1%

£'(2) ~ ~16.352674.
2(0.2) 0.4
d - . h 0.2 ° ° °
2" iteration: Take h,=-1t=-—"-=0.1, 1.9 2 2.1
2 2 -1 j+1

j+1=x+h,=2+0.1=21, and j—-1=x-h,=2-0.1=1.09.

@9+ f(21) -(@9+D" + (214>

f'(2) ~16.002864.
2(0.2) 0.2
The calculations must be continued until A<g.
NO.. of . hi f.' Ai _ fr_ f!
Iteration (i) : i i-1
1 0.2 16.352674
2 0.1 16.002864 0.34....
3 0.05 15.916291 0.08....
4 0.025 15.894702 0.02....
5 0.0125 15.889308 5.3x10 3
6 0.00625 15.887960 1.3%x10° 3
7 0.003125 15.887623 | 33x10 %<¢

f(2) ~15.887623.
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Example 3: Find f'(0) for the function f(x)=+/x +7x. (£=1x10"%)

Solution:
Use forward difference approximations with O(h),

-f +f .
fj':#_ko(h). . .
h 0 0.2
1" iteration: Take h, =0.2, j j+1

At x=0 = j=0, j+l=x+h =0+02=0.2.
— f(0)+ (0.2) — (0 +7(0)) + (/0.2 + 7(0.2))

f'(0) ~ 02 f'(0) ~ 03 ~9.236.
S h 02
2" iteration: Take h,=-1=—=0.1.
2 2
The calculations must be repeated as in the 1% iteration and continued until A<¢.
No. of h £/ A =|f—t
Iteration (i) ! i i-1
1 0.2 9.236068
2 0.1 10.162278 0.92621
3 0.05 11.472136 1.309858
4 0.025 13.324555 1.852419 (divergence)
f'(0) is undefined (does not exist).
Check: f’(x)=i+7 = f’(O):L+7:1+7. (undefined)
2+/x 240 0

Example 4: Find f'(0), f'(2), f'(4), and f"(0) with error of O(h)? for the
function of the following equally spaced data:
X 0 1 2 3 4
f(x) 30 33 28 12 -22

Solution:

* At x =0, forward differences must be used with O(h)?,

-3f +4f —f
j

U h HE 40,
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-3f(0)+4f (1) - f(2) _—3(30) +4(33) - (28) _

- F(0)= 7.
© 2(1) 2
2f —5f 1+4f_ z—f_ ; ,
"__ J ]+ ]+ ]+
fl'= " +0O(h)*,
. £7(0)= 2T (0)-5f@)+4f(2)- f(3) _ 2(30) —5(33) + 4(28) — (12) _ s
W? 1
* At x =2, use central differences with O(h)?,
“hrt 2
fi= o +0(h)*,
()= —4f@Q)+ f(3) _ —(33) +(12) __105.
2(1) 2
* At x =4, backward differences must be used with O(h)?,
3f,-_4f,-_1+f,-_2 ,
fl= o +0(h)“,
() = 3(4)-4 ;((1?;) + f(2) _ 3(-22) - 42(12) + (28) _ 3

Example 5: The following data represent a polynomial. Find its equation.
X 0 1 2 3 4 5
f(x) 1.0 0.5 8.0 355 | 950 | 1985

Solution:
The forward differences can be calculated as shown in the table below:

X f (x) Af A* f A3 f A*f
0 1.0 -0.5 8 12 0
1 0.5 7.5 20 12

2 8.0 27.5 32 12

3 35.5 59.5 44

4 95.0 | 103.5

5 198.5

-39 -



Numerical Analysis / Civil Eng. / 3™ Class

Since the 3" difference (which is equivalent to the 3™ derivative) is constant, then the
polynomial is of 3™ degree. The forward difference representation of the 3"
3 3
derivative is: a-f = At +0O(h).
dx* h?
However, for a 3" degree polynomial, this expression is exact (i.e. O(h)=0).

3 3 2

ar At 12 ., o 9 oAl
dx* h® 18 dx?

df

; =6x°+Ax+B = f(x):2x3+§x2+BX+C.
X

We have 3 unknown constants, so we need 3 points. Substituting the three points
(0,1), (1,0.5), and (2,8) into the above equation gives respectively:

2(0)3+§(0)2+B(O)+C:1 = C=1
2(1)3+§(1)2+B(1)+1:0.5 = A+2B=-5 ... 1)

2(2)3+§(2)2+B(2)+1=8 = 2A+2B=-9 ... (ID)

Solving Egs. | and Il simultaneously gives:
A=-4 and B=-1/2

f(x):2x3+_74x2 +_71x+1 =  f(x)=2x>-2x* —x/2+1.

Example 6: The deflections at selected locations in a beam, of El =4x10° N.m? and
L=4 m, are:

Location(m) (0| 05| 1 | 15| 2 |25 | 3 |35 4

Deflection (mm) | 0 | 12.7 | 23.1 | 30.8 | 33.329.9 226|118 O

Determine, as accurate as possible, the slope and shear force at both ends
and the bending moment at midspan.
Solution:
Let x represents the location and y represents the deflection, then,
The slope 6 :ﬂ’ shear force V :—El.d—gy, and bending moment M :—El.ﬂ.
dx dx® dx?
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* At x=0 m, forward differences must be used and we choose it with O(h)?,

-3f +4f - f .
’ J ]+ ]+ . . . . . . . . .
The slope 0] == 2h ’ 0 05 1 15 2 25 3 35 4
Y 3y(0) +4y(0.5) - y(1) _ —3(0) +4(12.7) - (23.1) _ 2775102,
0 2h 2(0.5)(1000)
-5f +18f -—-24f +14f -3f
The shear force V. =—EI.f"=-El. ) j+1 j+2 i+3 i+4
J 2h3
V ——El —5y(0) +18y(0.5) — 24y(1) +14y(1.5) - 3y(2)
o oh3 ’
Vv =—4><106._5(0)+18(12'7)_24(23'1)+14(30'8)_3(33'3):—88000N, ™)
° 2(0.5)*(1000)

* At X =4 m, backward difference must be used and we choose it with O(h)?,

3f —4f  +f
Theslope  =f/=—1 1"+ 1°%2
j 2h
Ly 3@ -4y@E5) +y(d) _3(0)-4(L18)+(226) _ ,, . .03
4 2h 2(0.5)(L000)
5f —18f +24f —14f  +3f
The shear force V. =—EI.f"=—El.— 1 +1 1 +2 1 +3 14
J 2h3
V ——E 5y(4) —18y(3.5) + 24y(3) —14y(2.5) + 3y(2)
4 B . 2h3 ’
V = 4100 5O ~18L.8) + 24(22.6) ~14(29.9) +3(33.3) _ jgnano (1)
‘ 2(0.5)%(1000)

* At x =2 m (midspan), using central difference and we choose it with O(h)*,

-f +16f -30f +16f —f
The shear force M =—EI.f/=—EL. -2 j-1 J vl i+t
: 12h?
M ——E| y(1) +16y(1.5) —30y(2) +16y(2.5) — y(3)
’ 12h?
M — 106~ (231 +16(30.8) ~30(33.3) +16(29.9) ~(226) _garioy o a
’ 12(0.5)? (1000)
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6- Numerical Integration

Introduction

The primary purpose of numerical integration (also called quadrature) is the
evaluation of integrals which are either impossible or else very difficult to evaluate
analytically. Numerical integration is also essential in the evaluation of integrals of
functions available only at discrete points. Such functions often result from the
numerical solution of differential equations or from experimental data taken at
discrete intervals.

An integral of a given function represents the area enclosed by this function
and the x-axis. So, evaluating this area is equivalent to evaluate the integral of this
function. In the following, some of numerical techniques, which are used to evaluate

an integral, are presented.
ftx)

1- Trapezoidal rule

Consider the integral:

b | |
| =] f(x)dx, X

a

If f(x) is replaced by a straight line (1% order polynomial) connecting two points,

then the area under this function can be computed from:

| = 2.(f61 + f,). [trapezoidal rule for one segment (panel)]
If we divide the interval [a,b] into n equal subintervals (segments) then:
f(x)

hZAX:E, fn

n fo f“‘l

h h h
I :E'(fo + f1)+5.(f1 + )+ + E'(f”_l +f.),

1
——
a : : ' o b
Xo X1 X2 Xz e Xn

n-1
or | :g.(f0 +2> f,+f,),  (trapezoidal rule for n segments)
i=1

where, f,=f,=f(a) and f, =1, =f(b).
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Notes:

1- The trapezoidal rule gives an answer with an error of order O(h)?.

2- The trapezoidal rule gives an answer which is exact for 1% degree polynomial
and approximate for other polynomials of higher degree.
3- Reducing h will, in general, provide more accurate answers.
f(x)
A

A

2- Simpson's rule

2.1- Simpson's 1/3 rule

If f(x) is replaced by a 2" order polynomial

(parabola) connecting three points, then the

area under this function can be computed from: : Ly X

Xo xll X5
| = 2.(fO +4f,+ f,).(Simpson's 1/3 rule for two segments)

If we divide the interval [a,b] into n equal subintervals (n is even) then:

I :2.(f0 +4f + f2)+g.(f2 +4f,+ f)+.. + g.(fn_2 +4f ,+ 1),

n-1 n-2
or | =g.(f0 +4 > f,+2 > f; +f,). [Simpson's 1/3 rule for n (even) segments]
i=1,3,5,.. i=2,4,6,..

Notes:

1- Simpson's 1/3 rule gives answers with an error of order O(h)*.

2- Simpson's 1/3 gives answers which are exact for polynomials of 2™ degree or

lower and approximate for other polynomials of higher degree.
f(x)
A

A

f5

2.2- Simpson's 3/8 rule

If f(x) is replaced by a 3" order polynomial

(cubic equation) connecting four points, then §<_h_>§<_h _)(_h_>
the area under this function can be computed a b > X
from: X X X X

| = %.(f0 +3f, +3f, + f;). (Simpson's 3/8 rule for three segments)

If we divide the interval [a,b] into n equal subintervals (segments) then:
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I =%.(f0 +3f, +3f, + f3)+%.(f3 +3f, +3f;, + f6)+..+%.(fn_3 +3f, ,+3f ,+ 1)
n—4
or | :3—8h.[f0 +3(f,+ f,+ f,+ fg+..)+2 D> f,+f,]1.  (3/8rule for n segments)
i=3,6,9,..

Notes:

1- Simpson's 3/8 rule gives answers with an error of order O(h)*.

2- Simpson's 3/8 gives answers which are exact for polynomials of 3™ degree or
lower and approximate for other polynomials of higher degree.

T
Example 1: Evaluate | = jsin xdx using six segments. Compare with the exact
0

answer. . f f fa f, fs o

Solution: 0 w6 216 3n/6 4n/6 Su/6 w

Since n=6 = hoax=23_70_7
n 6 6
n-1
By using the trapezoidal rule (which is of error of O(h)?) = 1 :g.(fO +2> f, +f,),
i=1

I :%m.{fo+2(fl+ f,+f+f,+f)+f}

= %[Sino + 2{sin(z /6) +sin(2z/6) +sin(37z/6) + sin(4r/6) + sin(5x/6)} + sin(z)]
~1.954097 .

The exact value is | =[-cosx]" =(-cosz) — (-c0s0) ={~(-D)}-{-D)}=2.

exact — approx.| <100 = 12-1.954097|

Percent relative error P= ‘ 5 ‘ x100=2.3%.

exact

Notes:

* |f we use the Simpson's 1/3 rule (which is of error of O(h)*) then,

h n-1 n—-2
| :5_(f0 +4 42D f +f,),

i=1,3,5,.. i=2,4,.

I :%/6.{](0 +4(f, +f,+ f)+2(f,+ f,)+ f.},
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= ﬁ[sin 0+ 4{sin(z/6) + sin(3z/6) + sin(57/6)} + 2{sin(27/6) + sin(47/ 6)} + sin(x)]

~ 2.000863.

Percent relative error P= %exaCt — approx‘% x100 = 2- 2'200861 x100 =0.04%.

exact

* |f we use the Simpson's 3/8 rule (which is of error of O(h)*) then,

3h n-4
I ZE'[fO +3(f,+ f+ f,+fs+..)+2 D f +f,.],

i=3,6,9,..

I =@.{f0 +3(f, + f,+f, +f)+2(f,)+ .},

- %[3"‘ 0+ 3{sin(z/6) + sin(27/ 6) + sin(4z/ 6) + sin(5/ 6)} + 2sin(37/6) + sin(x)]

~ 2.000005.

Percent relative error P= %exaCt — approx'| x100 = 2- 2000005% x100=0.0003%.

exact ‘

1.2
Example 2: Given the function f (x) =(x+1)*, find j f (x)dx correct to three

1

decimals.
Solution:
By using the trapezoidal rule,
fa f,
1% iteration; Taken=1 = h:b_a=1'2_1=0.2, T 5
n 1 '

| =g.(fa + fb)=2.[f(1)+ f(1.2)]=0—£2.[(1+1)1 +(1.2+1)1?1=0.457577.

_ _ fo fl f2
2 iteration: Taken=2 = ho2-2_12-1 =0.1, . . .
n 2 1 11 12

| :2.(f0 +2f, +f,) :2.[f @) +2f@Q1)+ f(1.2)]:02'1.[(1+1)1 +21.1+D)M + (1.2 +1)1?]=0.454962

The calculations must be continued until A<g¢.
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No. of h | S
Iteration (i) i i i
1 0.2 0.457577
2 0.1 0.454962 2.6 x10° 3
3 0.05 0.454306 | 65 %10 *<¢
1.2
| £ (x)dx ~0.454306.
1
9.9

Example 3: Evaluate j f (x)dx using the following data:
0

X 0 1.1 2.2 3.3 4.4 55 | 66 | 7.7 | 88 | 99

f(x) 0 0.6 0.8 0.6 01 | -021]-01] 01 | 03 | 04

Solution:
f.o f1 f, f3 fs f5 f6 f7 f8 f,

0 11 22 33 44 55 66 7.7 88 9.9

Here we have n=9 and h=1.1.

Solution I: By using the trapezoidal rule = | =E.(f0 + 22 f. +f.),
i=1
h
| = E{ +2(f,+f,+f,+f,+ .+, +f, +f)+f}
1.1

=10+2{0.6+08+0.6+0.1+(-02) + (-0.0) + 0.1+ 0.3} +0.4]= 2,64,

Solution I1: Since n =9 (odd), so we can not use the Simpson's 1/3 rule directly.
Instead, we can apply it for the first 8 segments and the trapezoidal rule
for the last segment:

I =g.{f0 +4(f, + fo+ fo+ )+ 2(F,+f, + f,)+ f8}+g.(f8 + fy),

= 1'31[0 +4{0.6 +0.6 + (-0.2) + 0.1} + 2{0.8 + 0.1+ (-0.1)}+ 0.3] + 1'21[0.3 +0.4] = 2.695-

Solution I11: We can apply the Simpson's 1/3 rule for the first 6 segments and the 3/8
rule for the last 3 segments, then:

I :2.{f0 +4(f, + f,+ f)+2(f, + )+ f 3+ %.{f6 +3(f, + f5) + fo},

3(L.1)

= 1'31[0 +4{0.6+ 0.6+ (—0.2)}+ 2(0.8+0.1) + (-0.1)] + [-0.1+3(0.1+0.3) + 0.4] = 2.70875.
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Solution 1V: Since n =9 = (3x 3), so we can use the Simpson's 3/8 rule directly:

I :%.{f0 +3(f, + f,)+ f,}+ 3—8h.{f3 +3(f, + )+ f 3+ %.{Q +3(f, + f5)+ fy},
3h
or | :E.{f0 +3(f,+ f,+f,+f,+f, +f)+2(f, + f)+ f,},
3(1.1)
= T[O +3{0.6+0.8+0.1+(-0.2) + 0.1+ 0.3} + 2{0.6 + (-0.1) } + 0.4] = 2.68125.
Example 4: A rectangular swimming pool is (7.5 m) wide and (12.5 m) long. The

depth of water (h) of distance (x) from one end of the pool is measured
and found to be as follows:

Distance,x,(m) | 0 |125| 25 | 3.75 5 7.5 10 | 125

Depth, h, (m) | 1.5 | 2.05 | 2.275 | 2.475 | 2.625 | 2.875 | 3.075 | 3.25

Determine, as accurate as possible, the volume of water in the pool.

RTINS S

Solution: 0 12525 3755 75 10 12.5

12.5
VVolume of water = Lateral area of water x wide = [ Ih.dx) x 7.5.
0
Here we have 4 segments of h; = 1.25 m and 3 segments of h, = 2.5 m.

By using the Simpson's 1/3 rule for the first 4 segments and the 3/8 rule for the last 3
segments we get:

h h 3h
I :51.(f0 +4f + f2)+§1.(f2 +4f, + f4)+?2.{f4 +3(f; + f;)+ 1.},

= 132)5 {L.5+4(2.05) + 2.275} + 1'?2)5.{2.275 + 4(2.475) + 2.625) + 3(2'5)

~35.63 m-.

{2.625 + 3(2.875 + 3.075) + 3.25}

~.Volume of water ~ 35.63 x 7.5 ~ 267.225 m°.
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3 2x°
Example 5: Evaluate I =| [ (x*+ y)dydx. (Use 4 segments in each direction)
2 X

Solution:
2x°

Let f(x,y)=x*+y = g(x)= jf(x,y)dy (the inner integral)
X

3 3 _ 2 go gl gZ 93 94
.'.I:J'g(x)dx, h =2-2-0.25 . . . . .
x 4 2 225 25 275 3

2

By using the Simpson's 1/3 rule, (f,+4 Zf +2 Zf +f.),

i=1,3,5,.. i=2,4,6,..

ool:r

h
:‘l“{go'*4(914'93)*'2924‘94}’

=% 19(2) + 4{9(2.25) + 9(2.75)} + 29(25) + g(I)].

2(2) f0 fl fg f3 f4
Tofind g(2): g(2)= [f(2y)dy= jf(z y)dy. . . . -~ o
) ) 2 55 9 125 16

h _
.'.g(2)=—y.[fo+4(f1+f3)+2f2+f4] h,=

:ﬁ A1f(2,2) +4{f (2,5.5) + f(212.5)}+2f(2,9) + f(2,16)]

16-2

4 =3.5

f(2,2):22+2:6, f(25.5) =22 +55=9.5, f(2,9)=22+9=13,
f(2125)=2>+125=165, and  f(216)=2° +16=20,

g(2) = 3—; [6+4(9.5+16.5) + 2(13) + 20] =182.

Similarly,
g(2.25)=360.9009, g(2.5)=664.8438, g(2.75)=1154.995,and g(3)=1912.5,

(Note: h, is different for each of these inner integrals)

RS % [L82 + 4(360.9009 +1154.995) + 2(664.8438) +1912.5] ~ 790.6478.

3 2 3 2 %X
The exact answer is: 1=[ [ (x*+ y)dydx={| x*y + y? dx,
2 X 2 X

3 NG 2% 2x" x* x|
[l 2xs v ax® oxd X x| 2 20X —790.5357.
. 2 6 7 4 2@,
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Romberg integration
This powerful and efficient numerical integration technique is based on the use

of the trapezoidal rule combined with Richardson extrapolation. Richardson
extrapolation is carried out according to:

| =1 .(4k—1| —|),
k 4k—1_1 m |

where | and II are the more and less accurate integrals, respectively.

m

If k=2, then I2 =%.(4Im - I|) which gives approximations with O(h)*.

_ 1 . N : 6
If k=3, then I3 = E.(16I o I|) which gives approximations with O(h)".

_ 1 . o : g
If k=4, then I4 _g.(64lm - I|) which gives approximations with O(h)".

— _ 1 _ - - - - - 10
If k=5, then I5 = 2—55.(256I . I|) which gives approximations with O(h)™".

08
Example 1: Evaluate j e~ * dx using Romberg integration with an absolute

0
convergence criterion of £=10"°.

Solution:
) ) — 8- fa f
1% iteration: Taken=1 = h= b-a_08-0_ 0.8, . .
n 1 0 0.8
| :2.(fa +f,) :g.[f (0) + f(0.8)]=0—f.[e“°)2 +e©91=0.610917.
g b-a 0.8-0 oo h
2" iteration: Taken=2 = h= = =0.4, . o o
n 2 0 04 08
h h 0.4 = 0 | .04y , o8y
=2 (o 428+ 1) =2 [1(0) +2f(04) + F(08)] =" [ +e™® +e79]=0,646316
_ _ f, f1 f, f5 f
3" iteration: Taken=4 = h= b—a = 0.8-0 =0.2, .—.—.2——3—.4
n 4 0 02 04 06 08

I =g.(f0 +> fi + fn):g.[f(0)+2{f(0.2)+ f(0.4)+ f(0.6)}+ f(0.8)],

- O_22 [e@ +2{e ®?" 4+ e 9" 4 e 9"} 4 o] =0.654851.

The calculations must be continued until A<g.
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i n 5 |2=%.(4|m—|l) |3=%.(16|m—|l) I4=é.(64lm—ll)
1 | 10610917
2 | 2]0646316 | 0.658116
3 | 4]0654851| 0.657696 0.657668
4 | 8[0.656966 |  0.657671 0.657669 0.657669
A 0.04.... 4.4 x10~* 1x10 °<e
0.8

o e ¥ dx~0657669.
0
Example 2: (Final 2014) A rod is subjected to an axial tensile load and the stress-
strain data, up to the point of rupture, is tabulated below. The area under

the stress-strain curve, up to the point of rupture, is called the modulus

of toughness. Compute this modulus to O(h)®.

Strain, ¢ (x1073%) | O 5 10 | 15 | 20 | 25 | 30 | 35 | 40

Stress, o, (N/mm?) | 0 | 5 | 10 | 16 | 21 | 25 | 28 | 30 | 31
Solution:

Since the modulus of toughness represents the area under the stress-strain curve,

3

40 x 10
.. the modulus of toughness = ja.dg

0

Since the answer is required to O(h)®, then we must use Romberg integration .

_b-a 40x107°-0

1*iteration: For n=1 = h =40x107°,
2 & O3 Op
! 22.(0'a ‘o) =%.[0+31]=0.62. 0 40%10°
2 iteration: Taken=2 = h=> ; a_40x10°-0_ 20x107,
6 0 o
20x10"® 0

4 L J
I=g.(0'0+2Gl+0'2)=T.[0+2(21)+31]:O.73. 0 20x107° 40x10°
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The calculations must be continued until the required order of error is achieved.

i n l |2=%.(4|m—|l) I3=%.(16Im—ll) I4:é.(64lm—ll)

1 1 0.62

2 2 0.73 0.766667

3 4 | 0.745 0.75 0.748889

4 8 | 0.7525 0.755 0.755333 0.755435
Order of error | O(h)? O(h)* O(h)® o(h)®

. The modulus of toughness ~ 0.755435 N/mm?®.
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7- Numerical Solution of
Ordinary Differential Equations

Introduction

An n™ order differential equation requires n conditions to obtain a unique
solution. If all conditions are specified at the same value of the independent variable,
then the problem is called an initial value problem, such as

y"+2y=Inx, y(0)=1and y'(0)=0.
If the conditions are specified at different values of the independent variable, then it
is a boundary value problem, such as
Ely"=-M, y(0)=0 and y(L)=0.
I- Solution of initial value problems
I-a- Solution of 1* order ODEs

Different numerical methods are used to solve 1% ordinary differential equations.

Consider the following 1* order ordinary differential equation y'= f(x,y):

1- Euler's method

y -y 1 Y
From the figure y’ :% v 'y,/l
J
,yj+1_y;_f — h — .
T ek A
or Yia=Y; Th1(X;,y;). (New value = old value + step size x slope)

Note: Euler's method gives approximations with an error of 1% order O(h).
2- Second order Runge-Kutta method
yj+1 = yj + h-k2;

h h
where  k; = f(x;,Y;) and kZ:f(xj+E,yj+§k1).

Note: The 2" order Runge-Kutta method gives approximations with an error of 2™

order O(h)2.
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3- Fourth order Runge-Kutta method

h
Yin =Y, +€(k1 + 2k, + 2k, +k,),

h h
where k= f(Xx,y;), kZ:f(xj+E,yj+§k1),

h h
ks = T (X, +§’yj +§k2), and  k,=f(x; +h,y; +hk;).
Note: The 4™ order Runge-Kutta method gives approximations with an error of 4"

order O(h)*.

Example 1: Find y(@) if % :%(x -y), y(0)=1. (Useh=1)
X
Solution:
1 [ 4 @
The slope f(x,y)=y'=7(x~) 0 pp 1

With the given step size h=1, we need one step to move from the start point x=0
(where condition is given) to the end point x =1 (where y is required).
Solution 1: By Euler'smethod =y, , =y, +h.f(x,,y,).

;=0 and vy, =y(x;)=Yy(0)=1,

y, =1+ h.f(01) =1+ (1)[%(0-1)]:0.5.

* From the analytical solution:
y=x-2+3"%? = y@l)=1-2+3e"*=0.819592 [the (exact) answer].

exact — approx.% <100 — 0.819592 — 0.5§ %100 ~39%
0.819592

Solution I1: By the 2" order Runge-Kutta method = Yia=Y; +hk,,

* Percent relative error P=

exact

where k = f(x;,y;) and k, = f(x; +g,yj +gk1).
X; =0 and Yi :y(xj): y(0) =1,

K, = f(0,1)=%(0—1)=—0.5,
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K, = (0 +%),(1+%>< (-0.5))) = f(0.5,0.75) :%(0.5— 0.75) = ~0.125,

-y, =1+ (1)(-0.125) = 0.875.

0.819592—0.875 oo
0.819592 |

Solution 111: By the 4™ order Runge-Kutta method,

* Percent relative error P=

h
yj+1=yj+€(k1+2k2+2k3+k4),
h h
where k= f(x;,y;), kZ:f(xj+§,yj+Ek1),
h h
k3:f(xj+§,yj+5k2),and k,=f(x; +hy; +hk;).
X;=0 and vy, =1,

K, = f(0,1):%(0—1):—0.5,

K, = f((0+%),(1+%>< (~0.5))) = f (0.5,0.75) :%(0.5—0.75) — 0125,

k,=f((0+ %),(1+ % x (~0.125))) =  (0.5,0.9375) = %(0.5 —0.9375) =-0.21875,

K, = f((0+1),(1+1x (-0.21875))) = f (1,0.78125) :%(1— 0.78125) = 0.109375,

oy, =1+ %(—0.5 + 2(~0.125) + 2(~0.21875) + 0.109375) = 0.820313.

0.819592 — 0.820313
0.819592 |

* Percent relative error P= x100~0.09%.

Example 2: Use Euler's method to find y at x =2, given that
dy =e***Vx, y)=0. (Useh=0.2)

Solution: 1 12 14 16 18 2
j_y:e“o-ly —  Theslopeis f(x,y)=e*"%,
X

With the given step size h=0.2, we need 5 steps to move from the start point x=1

(where condition is given) to the end point x =2 (where y is required).
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Using Euler's method = vy, =y, +h.f(x,,y;).

Step 1: x;=1and y,=y(x;)=y@=0,
Yy, =Y, +hf(@0)=0+0.2xe"*" =0.543656.
Step 2: X; =12 and vy, =0.543656,

V.. =Y., + . (1.2,0.543656) = 0.543656 -+ 0.2 x £"2°10548 —1 244779 .

The calculations must be continued for 5 steps.

Sl\tlzp (:jf) % Y, FOGy) =" | Vi =y, +hA(x,y))
1 1 0 2.718282 0.543656
2 12 0.543656 3.505614 1.044779
3 14 1.044779 4502745 2.163328
4 16 2.163328 6.149266 3.393181
5 18 3.393181 8.493644 5.091910

y(2) ~5.091910.

I-b- Solution of a set of 1% order ODEs
To solve a set of ordinary differential equations we can use the previous

methods (either Euler's or Runge-Kutta method).

Example : For the following set of ordinary differential equations, ifat x=0, y=4
and z =6, then by one step of the 2" order Runge-Kutta method, find
yand zat x=0.5.

OI—y:x—0.5y+z, %zx—y+22.
dx dx

Solution:
Let fl(x, y,z2)=Y =x-0.5y+z (which is used to findy),

and fz(x, y,2)=2'=x—-y+2z (whichis used to find z).

From the start point x=0 to the end point x=0.5, by one step, we need a step size
of h=0.5.
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By using the 2" order Runge-Kutta method,
yj+1 y] +h. (k )1 and Zj+1:Zj +h.(k2)2 Where,

h h h
(kl)l = fl(Xj’yj7zj) and (k2)1 = fl(xj +§lyj +E(k1)1azj +E(k1)z)-

h h h
k), = f,(x;,y;,2;) and (k2)2:fz(xj+§,yj+5(k1)1,zj+§(k1)2).

Xx; =0, y;=Y¥(x;)=y(0)=4, and z,=2(x;)=2(0)=6.
(k), = f,(0,4,6)=0-0.5(4) +6=4,
(k,), = 1,(0,4,6)=0—4+2(6) =8,

(k,), = f,((0+ —) (4+ 0—25 x 4), (6+0—25><8))—f(02558) 0.25-0.5(5) +8=5.75,

(k,), = f,((0+ )(4 % x 4),(6+ %xs))_f(ozsw) 0.25-5+2(8) =11.25,

S Yos =4+ (0.5)(5.75) =6.875, and
Z,, =6+ (0.5)(11.25) =11.625.

I-c- Solution of second order ODEs

To solve a 2" order ordinary differential equations we can use either the
previous methods (but first we must transform the problem into a set of two 1% order
ODEs.) or we use suitable finite differences approximations.

Example 1: Using h=0.1, find y(0.1) to O(h)? if
2
d7y dy
=y+e!, 0)=1, —=(0)=0.
" =y y(0) i 0
Solution I: By using the 2" order Runge-Kutta method which is of O(h)?.
We must first transform the problem into a set of two 1 order ODEs.
Let ﬂ:z = Q:y+et.
dt dt
Put fl(z) =y’ =z (whichis used to findy),
and fz(t, y)=z'=y+e' (which is used to find z).
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Yiu=Y;+hk,), and z,,=27,+h(k,), where,
h h h
(kl)l = fl(tj’yj’zj) and (kz)l = fl(tj +E’yj +§(k1)1’zj +E(k1)2)'

h h h
k), =f,@t,y,,z;,) and (k,),=f,(t +§’yj +§(k1)1’zj +§(k1)2).
Since h=0.1, then we need one step to move from the start point t=0 to the end

point t=0.1.

d
=0, y;=yt;)=y(0)=1 and zj=d—¥(tj)=o.

(kl)l = f1 (0’1’0) =0,

k), =f,(01,0)=1+e’ =2,

0.1 0.1 0.1

(), = £,(0+ 7). @+ =-x0), 0+ —=x2)) = ,(0.0510.) = 0.1,

k,), =f, ((0+0_;)’(1+0_é1x O),(0+0—;'>< 2)) = f,(0.05,1,0.1) =1+e%% =2.051271,

" Yo, =1+(0.1)(0.1) =1.01, and
z,, =0+ (0.1)(2.051271) =0.205127. (Not required, representing the slope)

Solution I1: By using the finite differences approximations:

For the given ODE, using central finite differences approximations of O(h)? we get,

foo—2f +f
fr=J-2 2‘ 11 | substituting this derivative into the given ODE vyields,
J
h
yj_1—2yj+yj+l t
2 = yj te, ® ® ®
h 0 01 02
t
Y, —(@2+h%)y +y,, =h’e’.
Att, =0.1, (Note: from the first condition y, = y(0) =1)
y, —(2+0.1%)y,, +V,, =(0.1%e* = —201y,, +VY,, =-0.988948  ...... (1)

For the second condition Z—{(O) =0, using forward differences of O(h)?, we get
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~3f +4f - f
f'= 1 21h+1 1*2 substituting into the 2™ condition yields:
J
—3y +4y -y
: 2h0'1 02 =0 = 4y, -Y,,=3 ... ()

Adding Egs. (1) and (2) gives: 1.99y,, =2.011052 = Yo, =1.010579.

Example 2: For the shown cantilever, find numerically the deflection at the free end.

(Use h=1m) P
X
— [EBm )
Ely"=—M. El constant

Solution:

Fromleft, M =—P(L-x) = EIly"=P(L-X),
Or y”:%(S—x), y(0)=0, y'(0)=0.
Solution I: By using the 2" order Runge-Kutta method which is of O(h)2.
We must first transform the problem into a set of two 1% order ODEs.
P
Let y'=z = z’:E(S—x).

Put f (2)=y'=2 (which is used to find y),

and fz(x) =7 :5(3— X) (which is used to find z).
Yin=Y; +h(k,), and  z;,=2;+h.(k;), where,

h h h
(k). = f.(x;,y5,2;)  and  (k,), = fi(X; +§’yj +§(k1)1’zj +§(k1)2)'

h h h
k), = fZ(leyj’Zj) and k), = fZ(Xj +Evyj' +§(k1)17zj +E(k1)2)-

Since h=1 m, then we need three steps to move from the start point x=0 to the end
point x=3 m.

Step 1: =0, =0, and =vy'(x.)=0.
Step 1 X Y, an Z; =Y'(x) Vi v v .

(kl)l = f (010’0) =0, ‘

P

(k). = 1000 = (-0 =
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k), = f.(0+ )(0+— 0),(0+2x3Pyy= £ (L0, 3Py_ 3P

2 El 2" "2ElI” 2El'
1 3P
k) =f(=,0— =— ——)=—
()= .G 0T ) =2 @)=
_0+ @y =3P (deflection at x = 1 m)
2El 2EI
=0+ )(—)=—- slopeatx=1m
()(ZEI) 2E| (slop )
3P 5P
Step 2: =1, =——, and 7. =——.
X; Y; 2EI ' 2El
3P 5P 5P
k = ,
(ko)y = B, 2El 2EI) 2EI
3P 5P
Kk = )=—(B-D="-
(), =B o ) =2 (3D
1 2P
k) =f (@1 —————,.—_—
(k,), 1((+) (2EI 2><E|)) ( 2EI) Sl
k) =f —)=—(B=-3)=—"—
(k,), 2( 2EI) ( ) 2EI
— ) =— deflectionatx =2 m
v, 2E| HOGD) =2 ( )
w2, = 2EI ()(E)__ (slope at x =2 m)
5P 4P
Step 3: =2, =—, and Z.=—.
X; Y) El S
5P 4P
(k)l—f(2 —)——
5P 4P
(k)z—f(2 —)——( - )——
4P 1 P
k) =f((2 —————,.———
(k,), 1((+) A > EI)) ( 2EI) SEl
5
k =f—,.——— —=——
(k.), 2(2 ) =2-3-)
19P )
— )= deflectionatx =3 m
()(ZEI) SE] ( )
°z— +(1)( )—9F> (slope at x =3 m)
E 2ElI” 2EIl P
) ) 19P
.. The deflection at the freeend is y, = TR
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Solution I1: By using the finite differences approximations:

For the obtained ODE, using central finite differences of O(h)? we get,

f —-2f +f
fr=_1-1 2‘ 1*1 substituting this derivative into the ODE vyields,
J
h
yj—1_2yj+yj+1:£(3_x.) Y3 Y2 Y1 Ye
h? El 7 3 2 1 0
Ph2 (Three unknowns:
yj—l_zyj+yj+1:E(3_Xj) Y1, Yo and yz)
At x; =1, (Note: from the first condition y, = y(0) =0)
P@)° 2P
Yo—2Y1+Y, = &) 6-1) = =2y, 4+ Y, =— (D)
El El
At x; =2,
P@)° P
y1_2y2+y3: () (3_2) - y1_2y2+y3:_ ~~~~~~ (2)
El El
For the second condition y’(0) =0, using forward differences of O(h)?, we get,
-3f +4f —f
f'= 1 21h+1 1*2 substituting into the 2™ condition yields:
J
-3y +4y -y
0 o 1 2:O — 4y1—y2:O ...... (3)

-2 1 O0ffy, 2P/ EI
In matrix form: | 1 -2 1jjy,.=| P/EI

4 -1 0|y, 0
Use Cramer's rule:

-2 1 2P/EI
1 -2 P/EI| 2P1 -

Pl=2 1 14P 2P
+(-)— +0
‘ e 4 JJ *

o -1 0 | Ell4 -1 - EI "ElI _8P
3 —2 1 0o —2 1 T 2 T EI
0+ (-1 +0
1 -2 1 ( )()‘4 —]J
~1 0

.. The deflection at the free end is y, = %
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I1- Solution of boundary value problems

To solve this type of ordinary differential equations, finite differences
approximations are used.

Example 1: Find y(2) and y(3): (Use h=1)

de_2y+xdy

—-y=0, y@) =6, y(4)=9.
dx? dx

Solution:
By using the finite differences approximations:

For the given ODE, using central finite differences approximations of O(h)* we get,

y. —2y +Y. -y Ty
X? j-1 ] j+1 +X j-1 j+1 _yjzo’
j h2 j 2h

X y Y2 Y3 Y
X?(yj—l_zyj+yj+1)+_J(_yj—1+yj+1)_h2yj:Ol 01—02—03—04
| ) 2 ) 1 2 3 4
X X
(X? _7J)yj—l o (ZX? + hz)yj + (XT + 7J)y141 =0. (Two unknowns)
At x; =2, (Note: from the given conditions y, =6 and y, =9)
(@2 -2y, - (2x2° + )y, + (22 +750)y, =0,
3(6) -9y, +5y, =0 = -9y, +5y,=-18. ... (1)
At x; =3,

1x3 1x3
(32 _T)yz —(2><32 +12)y3 +(32 +T)y4 =0,

7.5y, —19y, +10.5(9) =0 = 7.5y, -19y,=-945. ... (2)

) -9 5 Y, -18
In matrix form: = )
75 19|y, —-94.5

Use Cramer's rule:

~18 5 ‘
~945 -19 —18(-19)—5(—
. 945 -19 _-18(-19)-5(-94.5) 8145 _ . ...\
9 5 ~9(-19)-5(7.5) 1335
75 -19
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‘—9 -18 ‘

75 —945 —9(-94.5)— (~18)(7. .

- _—9(-945) - (-18)(7.5) _ 9855 __ hor1rn
9 5 1335 1335
75 -19

Note: The analytical solution is y = 4 +2x = y(2)=6 and y(3)=7.333333.
X

Example 2: Estimate, numerically, the deflection at midspan. (Use h=L/4)
Solution:

q
S S T S I

4 4. B -
e ow = B8 -

dx* dx* El constant

y
d*y _ g : ,
or =—, y(0)=0, y'(0)=0, y(L)=0, and y'(L)=0.

dx* El

By using the finite differences approximations:

For the obtained ODE, using central finite differences of O(h)? we get,

f —-4f +6f —4f +f
i-2 j-1 J

4 1x1 1*% substituting into the ODE yields:
h
-4 +6y -4 +
yj—2 yj—l yj yj+1 yj+1:i
h El’
q h? Yo Yusa Yz Ysua Yo
: —+——+ o+
or Y,,—4y;,+6y; -4y, +VY;.= IJEI : 0 L4 L2 34 L
At x; =L/2,

(Note: from the conditions y, =0 and y, =0)

L/4)*
Yo =AY a6y 0 =AYty _M

L — ’

El
L4
by, +BY,, —4y. . = 2‘516E| . (1)
For the condition y'(0) =0, using forward differences of O(h)?, we get,
-3f +4f —f
f'= : 21h+l 1*2 substituting into this condition yields:
J
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-3y +4y -y
0 2#4 L’z —Q = A4y . —Y.,,=0. ... (2)

For the condition y’(L) =0, using backward differences of O(h)?, we get,

3f —4f +f
fr=—1 thl =2 substituting into this condition yields:
J
3y -4y +y
SRRSO =y, Ay, =0 3)

-4 6 -4y, | |qL'/256El
Inmatrix form: | 4 -1 0 Ky, = 0
0 1 -4 YaLra 0

Use Cramer's rule:

R S
256El
4 0 0
4
y o = _ 256EII0 -4 _16El _ qL4
L/2 — _4 6 _4 - _1 0 6 _4 = = .
4 -1 0 1 -4 1 -4
0 1 -4
. The deflection at midspan is y ~£
) Y2~ 1024E1
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8- Curve Fitting

L east-squares criterion (linear regression)
Let (x,¥,), (X,,Y,), ....., (X,,Y,) asetof observations to be modeled, g(x) is

the approximating model, and e is the local error (residual) between the observations
and the model, that is e, =g, —Y,. In the least squares method, to get a good

approximating model, the total error (which is the sum of the squares of the local
errors around the regression line) E =>"e’ must be minimized.
i=1

y
Let g(x)=a, +a,x (1% order polynomial, i.e. a straight ling), "4

E:Z:,(gi _yi)2 - E:é(ao +aX; _yi)Z’

The total error E is minimized if E=0 and ﬁ=0.
oa, oa,
aE n n
—=2> (@, +ax-Yy) = 2> (a, +ax—Y;)=0,
oa, o i1
dYa,+>ax—>y =0. But Y a,=na,,
i=1 i=1 i=1 i=1

n.a0+zn:xia0:2n:yi. .............. (1)
i=1 i=1
. oE n n )
Slmllarly a—=22(ao +a X _yi)xi = ZZ(aoXi + X _Xiyi)ZO,
i=1 i=1

Zn:xiao+zn:xi2a1—zn:xiyi =0, = Zn:xiao+zn:xi2a1:2n:xiyi e (2)
i=1 i=1 i=1 i=1 i=1

i=1

In matrix form:
noo2x {a } 2V
i=1 0 — i=1 ]
Zn: X Zn: x? |1 DX,
i i=1
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Generally, if g(x) =a, +a,x+a,X* +....... +a X" (k™ order polynomial), we will have

n n n N T n T
n x o OIX e DX >y,
] i:l iil ri1=1 0 n'=1
PIRED I D I R in"“ a, PR
i=1 i=1 i=1 i=1 i=1
52 53 SR Lok [T w2 :
in in in in in Yi
i=1 i=1 i=1 i=1 i=1
n, -k nm|;+1 n---k-+2 B 2k & n---k-
lexi zl:xi ;Xi lexi ;xi Y,
L i= i= 1= 1= _ L 1= .

Statistical definitions
y is the mean of y.

E,, is the total sum of the squares around the mean of y, thatis E_= Z(yi - V)%,
i=1

2 - - - - = - - - 2 E - E

r< is the determination coefficient which is given by r° = mE :

m

r is the correlation coefficient which is given by r = Jr.

For a perfect fit (E=0) = r=r?=1, signifying that the approximating
model g(x) explains 100% of the variability of the data (observations).

Example 1: Given the following data:
X 0 1 2 3 4 5

f(x)| 21 | 7.7 | 136 | 27.2 | 40.9 | 61.6
Using the least squares criterion:

1- Fita 1* order polynomial (straight line) to this data.
2- Fita 2" order polynomial (quadratic equation) to this data.

Solution:
1- Let the straight line is g(x) =a, + a,X, then we have

n

noo2X {ao} anyi

i=1

— 1
n n 1

=1
n
Sx o a) [ $xy,
i=1

i=1 i=1
n=6, Y X =0+1+2+3+4+5=15, > x?=0°+1*+2*+3%+4%+5% =55,
i=1 i=1
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Dy, =2.1+7.7+13.6+27.2+40.9+61.6=152.6,
i=1

S'xy, =0(2.1) +1(7.7) + 2(13.6) + 3(27.2) + 4(40.9) + 5(61.6) = 585.6.

i=1
[6 15](a,] [152.6
"'115 55||a,| |585.6]|

Use Cramer's rule:

{152.6 15}
. 585.6 55| 152.6(55)-15(585.6) ~391 . _,.0)
6 15 6(55) —15(15) 105
15 55
{6 152.6}
_|15 5856 _6(585.6) ~152.6(15) _1224.6 ., soooc
6 15 6(55) —15(15) 105
15 55

- g(x)=—3.72381+11.66286x.

2- Let the 2" order polynomial is q(x) = b, +b,x +b,x?, then we have

n in inz_ b° _ iyi |
i i i1

x2=0°+1°+2°+ 3 +4° +5°=225, Y'x'=0°+1"+2°+3* +4° +5* =979,

i=1

M- 1D

}[‘

X2y, =0%(2.1) +1°(7.7) + 2°(13.6) + 3*(27.2) + 4% (40.9) + 5°(61.6) = 2488.8.

6 15 55 |(b, 152.6
~.|15 55 225b ¢=| 585.6
55 225 979]||b, 2488.8
Use Cramer's rule:
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1526 15 55
5856 55 225 55 225 15 55
152.6 +(-1)(585 6) 8.8
2488.8 225 979 225 979 55 225
= _ =2.47857
6 15 55 55 225 L 5) 15 55
15 55 225 225 979 225 979 55 225
55 225 979
6 1526 55
15 5856 225 15 225 6 55
~152.6 +585.6 (1)(24888)
55 2488.8 979 55 979 55 979 15 225
= g = 2.35929
6 15 55 6 55 225 Y ) 15 55
15 55 225 225 979 225 979 55 225
55 225 979
6 15 1526
15 55 585.6 15 55 6 15
152.6 +( 1)(585. 6) +2488.8
55 225 2488.8 55 15 55
| = _ =1.86071
6 15 55 55 225 15 55
15 55 225 %225 979" TV )225 979 5555 225
55 225 979
. q(X) = 2.47857 + 2.35929x +1.86071x".
Statistical comparison
B For g(x) For q(x)
X Y, E, =i -y)’ ) )
Ei:(g(xi)_yi) Ei:(q(xi)_yi)
0 2.1 544.44 33.92 0.14
1 7.7 314.47 0.06 1.00
2 13.6 140.03 36.02 1.08
3 27.2 3.12 16.52 0.80
4 40.9 239.22 411 0.62
5 61.6 1308.03 42.37 0.09
> 152.6 2549.31 133.00 3.73
y=1226 , _ 2549.31-133 2549.31-3.73
g2V 6 r2=En"E "= maem | T T sma0an
- — E . .
n 25.433333 m 09478 _ 0.9985

Since r?, for q(x), is closer to one, thus the quadratic equation q(x) is better than
the linear equation g(x) in representing the given data.
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Example 2: (Final 2014) The volume of water pumped by a pump is measured as a
function of time as tabulated below:
Time, t, sec 0 1 5 8
Volume,V,m* | 21 | 7.7 | 13.6 | 27.2

Fit the equation V =at + bt*® (where a and b are constants) to the above
data using the least squares method.
Solution:

Since the required equation V =at + bt® is a 3" order polynomial, thus, to make use
of the general least squares matrix, we compare it with the general form of a 3 order
polynomial g(t)=a, +a;t +a,t* +a.;t®. It is obvious that the first and third constants

do not exist in the required equation, thus we cancel the first and third row and
column of the general least squares (4 x 4) matrix,

g
NP - Lo [la

n Zt‘ AL >V,

i=1 i=1 i=1 i=1 — i=1
STz S STt NV (. Nty
iLzld ] %_ld T ﬁ‘ T IL=1J ] o = 1
\ . n A n N 5 n 6 n
Jtl Ztl Zdt' Ztl a3 Zt|3vl
L i=] i=1 i=1 i=1 _ L i=l _
to get,
Ztiz Zti4 a Ztlvl
E =] { }: i1 ’
>ttt [P) >y,
i=1 i=l i=1
SHP=07 112 457 +82 =90, St'=4722,  3t°=277770,
i=1 i—1 i=1

YtV, =232.2, and YtV =130818.
i=1

i=1
| 90 4722 ||la| | 2322
"1 4722 277770 ||bJ |13081.8|
Solving the above matrix, we get: a=1.008852~1 and b=0.029946 ~0.03.

-. The required equation is V =t +0.03t°.
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Example 3: If the curve y=a+bx+ ¢ IS to be used to represent the points (1,4.5),
X

(2,4.75), and (4,7.125), find the values of a, b, and ¢ by using linear

least squares regression.
Solution:
Since the given curve is not a polynomial, we cant use the general least squares
matrix, and we must use the general least squares derivation.

Let the approximating equation (model) g(x)=a +bx + ¢
X

The local error is e =g, —y, and the total error is E=>e’> which must be
i=1

minimized by letting Z—E_O ﬁ—o d—:O
a

ob oc
E:Z‘,(gi_Yi)2 = E= Z(a+bx +;_y.)

i=1 i

oE oE
—=2) (a+bx +—— —=0 = 2) (a+bx +—— 0,
a Z( X . = Zl( X Yi) =
Za+zn:bx +Zn:£—iy, =0, but Zn:aozn.ao,
i= i= |_1XI i=1 i=1
na+2bx +Zn:C iy, .............. (1)
|=1XI i=1
oE n c oE n
—=2>(a+bx. +—=—-y)x, —=0 25 (ax. +bx? +c—x.y.)=0,
3~ 2@+ X Vi, o5 =0 = 22 (ax +bx i)
Zn:xia+zn:xi2b+zn:c—ixiyi:0, but Zn:c:n.c,
i=1 i=1 i=1 i=1 i=1
Zn:xia+ixi2b+n.c:ixiyi .............. (2)
i=1 i=1 i=1
oE n c 1 o©E
—=2) (a+bx, +—-y)—, —=0 = 2 —a+b+—c—— 0,
oc .21:( LOX y')xi oc g(x %)=
Z—a+zb+z—c zy but Y'b=nb,
1 Yi
" Z—a+nb+2—c Z .............. (3)
i=1 X : i=1 X
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In matrix form:

_ n .1 S
n X, —
izﬂ:l iZ=1:Xi a Z:l:yl
ixi anxiz n b= anxiyi ]
i=1 i=1 i=1
n 1 n 1 C n )
— n — Zt
_;xi ;xiz_ _;xi |
n=3, Yx =14+2+4=7, 3 x*=1?+2?+42=21,
i=1 i=1
nl 1 1 1 nl 1 1 1
S =C4=4+-=175, = == 4= 4+ =13125,
izzl“xi 1 2 4 .fo 1?22 4

n

3y, =45+4.75+7.125=16.375,  >.X.y, =1(4.5) + 2(4.75) + 4(7.125) = 42.5,

i=1 i=1

ny. 45 475 7.125
— = + +

i=1 X 1 2

=8.65625.

3 7 175 |[|a 16.375
7 21 3 br=| 425
1.75 3 1.3125||c 8.65625

Solving the above matrix, we get: a=05, b=15, and c=25.

Non-polynomial models

Linear least-squares regression may be used to fit a non-polynomial model by
transforming it to a polynomial model, such as

* y=ce® = Ihy=ha+Bx = y =a+pBx (polynomial),
where y'=Iny and a=Ina.
* y=aox’ = logy=loga+pBlogx = y =a+pAx (polynomial),
where x =logx, y =logy, and a=loga.
a.X N £:ﬂ+x N l 1 pg1

~—+5.> = y =a+bx (polynomial),
ﬂ_{.x y a.X Y a o X

*y=

*

where X ==, y =

X | =

, azi, and bzﬁ.
a a

1
y
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Example: The stress-strain data obtained from a compression test of a concrete
cylinder is listed below. Perform a least-squares fit using the equation

o = AeB? , Where A and B are constants.
Strain & (x107°) 500 | 1000 | 1500 | 2000 | 2375
Stress o (MPa) 155 | 246 | 29.3 | 30.3 | 30.6

Solution:

Since the given model o = Ae®¢ is a non-polynomial, thus we must first transform it
to a polynomial form.

oc=Ae®”* = Iho=hA+Bs = y=a+Bx (polynomial),
where x=¢, y=Ino and a=InA.
X,(=¢) (x10°) | 500 | 1000 | 1500 | 2000 | 2375

y,(=Iho) 2.74084 | 3.202746 | 3.377588 | 3.411148 | 3.421
Now, use the least squares criterion,

nooXX {a} 2V
i1 _| 3
Zn: X Zn: Xi2 B D XY,
i1 i1 i1

5, >.x =(500+1000 +1500 + 2000 + 2375) x10° = 7375x10°°,

i=1

n

S'x?=1314x10°, 3y, =16.153322, and > x.y, =0.024587.
i=1

i=1 i=1

. 5 7375%x107° |[a] [16.153322

| 7375x10°  1.314x10° ||B) | 0.024587 |
Solving the above matrix, we get: a=2.734504 and B =336.380242.
But a=InA = A=e* = A=e*"™ =15402102.

~. The required equation is o ~15.4e336-38¢

-71 -



Numerical Analysis / Civil Eng. / 3™ Class

O- Interpolation and Extrapolation

Introduction
By interpolation a functional value is approximated between the data points.

While, by extrapolation a functional value is approximated beyond the data points.
The simplest form of interpolation is to connect two data points with a straight
line then using similar triangles,

FO) = T0x,) _ F(x) = f(x)

X— X, XX, iy fix)
F(X) = (X)) + (X~ x)f(xx) )‘:(X)
B f(x)
If x, =0, then fix)
£(x) = £ (0) + X f(xl); %),
X > X
O f(x)=1(0)+ Af,. % X x
Interpolation with equally spaced data
1- Gregory-Newton forward interpolation formula
From Taylor series
3
f(x)= f(0) + xf'(0) + = f”(O) 31O
Since f(0) = A; h L0 —h— 7).,
2
and £(0) = Ahjo ChE"(0) =
f(x)=f(0)+ %Afo + x(;;zh) A+ X(x= h)é;( 2h) o fodo.. (General formula)
If h=1,
F(X) = £ (0) + XAF, + %& f X ‘1;()‘ “2 Af ... (Particular formula)
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2- Lagrange interpolation polynomial
The Lagrange interpolation polynomial is simply a reformulation of the

Gregory-Newton polynomial that avoids the computation of divided differences. It
can be represented as

fn(x)=§Li (x).F (%),

where Li(x):f[))((:))((j. (] designates the " product of ")
Or
f(X)I (X—Xl)(X—XZ)...(X—Xn) f(X0)+ (X_Xo)(X_XZ)"'(X_Xn) f(X1)+
(Xo_Xl)(Xo_XZ)"'(Xo_Xn) (Xl_Xo)(Xl_XZ)"'(Xl_Xn)
o + (X_Xo)(x_xl)"'(x_xn—l) f(Xn)-

(Xp =% )Xy = X)Xy = X,4)
Example 1: Given the following data:
X 0 1 2 3
f(x)| -7 -3 6 25
Find f(1.1) and f(3.5).

Solution:

Solution I: By Gregory-Newton interpolation formula,

Since h=1 = we can use the particular formula directly (rescaling is not required).
X, =0 = Shifting is not required.

x | f(x) | AfF | AP | Af
0 -7 4 5 3)
1 -3 9 10

2 6 19

3 25

£(X) = £ (0) + XAf, +¥& - X(X‘lgl(x‘ 2 NF g

To get the most accurate interpolation we choose the first row, in the above forward
differences table, as the base line (since it contains more entries).

F(X) =7 + X(4) + —X(XZ‘ D (5) 4 X ‘1()30‘ —2) ).
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1101-0) o 1101-DA1-2) o

f(L.1)=-7+1.1(4)+ —24075.

£(3.5) =7 +3.5(4) + W(s) 3565 ‘é)(3'5 ~2) (5-39.8125.

Solution I1: By Lagrange interpolation formula,
F(x) = (X=X)(X=X,)...x = X;) F(x)+ (X=X%,)(X=X,)...x = X,) F()+ .

(Xo - Xl)(xo - X2)...(XO - Xn) (Xl - Xo)(xl - XZ)"'(Xl - Xn)
F(x) = (x=D(x-2)(x-3) 7)+ (x=0)(x-2)(x-13) (=3)+ (x=0)(x-1)(x-3) (6) +
(0-1)(0-2)(0-3) 1-0@1-2)2-3) 2-0(2-1(2-3)

N (x-0)(x-D(x-2) (25).
3-0)(3-1)(B3-2)

F(LI) = 1.1-1)@.1-2)2.1-3) )+ 1.1-0)(1.1-2)(1.1-3) 3+

(0-1)(0-2)(0-3) 1-01-2)2-3)
LAI-0@1-D01-3) o A1-0Q1-DA1-2) o e
(2-0)(2-1)(2-3) B-0EB-1)(B-2)
(35 - B5-DB5-2@35-3) _\ (35-0@5-2@5-3) o
0-1)(0-2)(0-3) 1-0@2-2)A-3)
L (35-0B5-D@5-3) o 35-0)B5-DB5-2) o a9100
(2-0)(2-D(2-3) B-0B-1)(B-2)

Example 2: Approximate the functional value at x = 4.31.
X 1 2 3 4 5
f(x) 6 10 46 | 138 | 430

Solution:

By Gregory-Newton interpolation formula,

Since h=1 = Rescaling is not required. (we can use the particular formula directly)
X, #0 = Shifting is required.

X Xgirea | T(X) | Af ANF | A | AT
1 0 6 4 32 24 120
2 10 36 56 144

3 2 46 92 200

4 3 138 | 292

5 4 430
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N X(X —1)I(x —-2) Nt

£(X) = £ (0) + XAf, +¥N ;.

F(X) =6+ x(4) + —X(XZ‘ Y (32)+ XX ‘1()30‘ =2) 24y + XX ‘1)(X2; 2(X=3) 190,

At x, =431 = x,,=431-1=3.31,

) _643314)+ 3.31(3.231—1) (32) + 3316331 —61)(3.31— 2 2+

N 3.31(3-31—1)(32-2’1— 2)3-31=3) 150y ~197.16857.

f(x

f (4.31) =197.16857.

Example 3: Given the following data. Find y(0.23).
X 02 | 04 | 06
Y 10.916|0.836| 0.74

0.8
0.624

1.0
0.4

Solution:
By Gregory-Newton interpolation formula,
Since h=1 = Either we use the general formula or we can use the particular
formula after rescaling the given points.
X, #0 = Shifting is required.

X Xrescaled Xshifted y Ay AZ y ASy A4y
0.2 1 0 0.916 | -0.08 | -0.016 | -0.004 | - 0.084
0.4 2 1 0.836 |-0,096 | -0.02 |-0.088
0.6 3 2 0.74 | -0.116 | -0.108
0.8 4 3 0.624 | - 0.224
1.0 5 4 0.4
y(x) = y(0) + XAy, + %AZ y, + X(x _1;()( —2) x Yy Foerennn
y(x) = 0.916 + x(~0.08) + )(()(2_1)(—0.016) + )((’(_123(’(_2)(—0.004) LXK _1)("2; 2(X=3) 0 084)

Atx, =023 = x_ =22 _1_015
0.2

new

y(x_)=0.916+0.15(-0.08) + % (-0.016) + 0.15(0.15 _61)(0'15_ 2) (—0.004) +

0150015 1)(02'15 —2)(015-3) (—0.084) =0.907216.

y(0.23) =0.907216.
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Interpolation with unequally spaced data
For unequally spaced data (h is different), the Lagrange interpolation
polynomial may be used.

Example 1: (Final 2014) The accompanying table gives the velocity, of a moving
body, at various times. Estimate the velocity att =7 s.
Time, t, s 1 2 3 8
Velocity,v, m/s 2 41 | 64 | 365

Solution:
Since h is different, we use Lagrange interpolation polynomial.
V(t) _ (t _tl)(t _tz)(t _tn) V(to) + (t _to)(t _tz)(t _tn) V(tl) +
(to _tl)(to _tz)---(to _tn) (tl _to)(tl _t2)"'(tl _tn)
t):(t—2)(t—3)(t—8) 2)+ t-D(t-3)(t-8) (4.1)+ (t-D(t-2)(t-8) (6.4) +
1-2)1-3)(1-8) (2-1)(2-3)(2-8) (3-1)(3-2)(3-8)
+ (t=1){t=2){t=3) (36.5).
(8-1)(8-2)(8-3)
v(7) = (7-2)(7-3)(7-8) @)+ (7-1)(7-3)(7-8) (4.1)+
1-2)A-3)(1-98) (2-1)(2-3)(2-8)
GAI=DT=2T28) g gy TDU=2T23) (365 965 s
B-D(B-2)3-8) @-1D(B-2)@-3)

v(

Example 2: (Final 2015) The ratio of the work done in a project, as a function of
time, is found as below. Estimate this ratio at t = 2 month.

Time, t, (month) 3 4 5
Work, W, (%) 5 14 37

Solution:
Since h=1 = We can use the particular Gregory-Newton interpolation formula
directly without rescaling.
t =0 = Shifting is required.

t | Lhiea | W | AW | A2W
3| 0 5 9 14
4 1 |14 23

5| 2 |37
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W (t) =W (0) + tAW, +t(t2—_|1)A2W0 I

At t,=2 = t  =2-3=-1,

W(t,,)=5+(-1)) + ﬁ(m -10% Not Ok. .

If a function cannot be well approximated by a polynomial, a useful device can be
adopted by plotting a (log — log) graph. This reduces a large variety of functions to
essentially straight lines or to smooth curves which are easy to interpolate.

Use a (log — log) graph,

t =Int 1.099 | 1.386 | 1.609
W =Inw |1.609|2.639|3.611

Now, since h is different, we use Lagrange interpolation polynomial.

W) = " -t —t2)...0 —th) W) + (" —t7o)(t —t72)...0 —th) W) +
(t" —t)(t o —t72)...6 70 —t™) (1 —t5)(t 1 —t)...¢ 7 —tTh)

W) = (t"—1.386)(t" —1.609) (1.609) + (t"—1.099)(t" —1.609)
(1.099 —1.386)(L.099 —1.609) (1.386 —1.099)(L.386 —1.609)
(t"—1.099)(t" —1.386) (3611).

(1.609 —1.099)(L.609 —1.386)

(2.639) +

Att=2 = t =In2=0.693,

() - (0.693-1.386)(0.693-1.609) | o0\ (0.693-1.099)(0.693-1.609) , oy
(1.099 —1.386)(1.099 —1.609) (1.386—1.099)(1.386 —1.609)

. (0.693-1.099)(0.693-1.386) 3 11y ¢ sreces
(1.609—1.099)(1.609 —1.386)

W (

But W' =InW = W=¢V =% _178,

. W(2)=1.78%.
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